Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Jan 1;163(1):41–53. doi: 10.1084/jem.163.1.41

Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis

PMCID: PMC2188010  PMID: 3941297

Abstract

Elevated cerebrospinal fluid (CSF) IgG and oligoclonal IgG bands on electrophoresis are valuable clinical markers for B cell proliferation in the brains of patients with multiple sclerosis (MS). Using two- dimensional electrophoresis, (2DE) we have established that the humoral immune response in MS brain is characterized by finite clonal complexity for the major Ig classes. An important question is whether this immune response is clonally stable or varies with time, related to the development of new lesions and random entry of B cells into the MS brain. To investigate this, we performed serial electrophoretic studies on CSF obtained from 19 patients with MS; the intervals ranged from 7 to 12 yr, with a mean of 8 yr. These analyses included studies of IgG, IgA, and IgM, and revealed that the humoral immune response in MS is clonally stable over long periods. Spontaneous fluctuations or reduction in CSF IgG levels by drugs did not qualitatively affect B cell clonal proliferation in MS brain, in that dominant bands and spots were not obliterated. It has been asserted that IgG synthesis in MS is nonsense antibody because the spectotypes of IgG isolated from different regions of MS brains differ. Factors other than clonal heterogeneity could account for differences found using one-dimensional analysis. B cell clonal products resolve into unique and well-resolved spots by 2DE; the method is uniquely suitable for analysis of restricted immune responses. Therefore, Ig were isolated from 11 regions of three MS brains and the 2DE patterns were compared. The similarity of the 2DE patterns indicate unequivocally that major clones are distributed uniformly although some clones are more prominent in some brain areas. IgA and IgM isolated from the same areas also showed similar patterns. Furthermore, the patterns of light and heavy chains in brain regions differed from serum but were similar to the autologous CSF, providing new evidence that CSF IgG in MS derives from synthesis in situ. Our results indicate that, once initiated, B cell clonal proliferation persists indefinitely and is little altered qualitatively at a clonal level over time, even when CSF IgG levels change or are altered by drugs. Our results are consistent with allotype and idiotype analysis of Ig production in MS and conflict with nonsense antibody proposals of the origin and nature of in situ synthesized Ig in MS.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acuto O., Reinherz E. L. The human T-cell receptor. Structure and function. N Engl J Med. 1985 Apr 25;312(17):1100–1111. doi: 10.1056/NEJM198504253121706. [DOI] [PubMed] [Google Scholar]
  2. Awdeh Z. L., Williamson A. R., Askonas B. A. One cell-one immunoglobulin. Origin of limited heterogeneity of myeloma proteins. Biochem J. 1970 Jan;116(2):241–248. doi: 10.1042/bj1160241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baird L. G., Tachovsky T. G., Sandberg-Wollheim M., Koprowski H., Nisonoff A. Identification of a unique idiotype in cerebrospinal fluid and serum of a patient with multiple sclerosis. J Immunol. 1980 May;124(5):2324–2328. [PubMed] [Google Scholar]
  4. Booss J., Esiri M. M., Tourtellotte W. W., Mason D. Y. Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J Neurol Sci. 1983 Dec;62(1-3):219–232. doi: 10.1016/0022-510x(83)90201-0. [DOI] [PubMed] [Google Scholar]
  5. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cleary M. L., Chao J., Warnke R., Sklar J. Immunoglobulin gene rearrangement as a diagnostic criterion of B-cell lymphoma. Proc Natl Acad Sci U S A. 1984 Jan;81(2):593–597. doi: 10.1073/pnas.81.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ebers G. C. A study of CSF idiotypes in multiple sclerosis. Scand J Immunol. 1982 Aug;16(2):151–161. doi: 10.1111/j.1365-3083.1982.tb00708.x. [DOI] [PubMed] [Google Scholar]
  8. Esiri M. M. Multiple sclerosis: a quantitative and qualitative study of immunoglobulin-containing cells in the central nervous system. Neuropathol Appl Neurobiol. 1980 Jan-Feb;6(1):9–21. doi: 10.1111/j.1365-2990.1980.tb00199.x. [DOI] [PubMed] [Google Scholar]
  9. Gerhard W., Taylor A., Sandberg-Wollheim M., Koprowski H. Longitudinal analysis of three intrathecally produced immunoglobulin subpopulations in an MS patient. J Immunol. 1985 Mar;134(3):1555–1560. [PubMed] [Google Scholar]
  10. Hall W. W., Choppin P. W. Measles-virus proteins in the brain tissue of patients with subacute sclerosing panencephalitis: absence of the M protein. N Engl J Med. 1981 May 7;304(19):1152–1155. doi: 10.1056/NEJM198105073041906. [DOI] [PubMed] [Google Scholar]
  11. Huang H. V., Dreyer W. J. Bursectomy in ovo blocks the generation of immunoglobulin diversity. J Immunol. 1978 Nov;121(5):1738–1747. [PubMed] [Google Scholar]
  12. Mattson D. H., Roos R. P., Arnason B. G. Comparison of agar gel electrophoresis and isoelectric focusing in multiple sclerosis and subacute sclerosing panencephalitis. Ann Neurol. 1981 Jan;9(1):34–41. doi: 10.1002/ana.410090107. [DOI] [PubMed] [Google Scholar]
  13. Mattson D. H., Roos R. P., Arnason B. G. Isoelectric focusing of IgG eluted from multiple sclerosis and subacute sclerosing panencephalitis brains. Nature. 1980 Sep 25;287(5780):335–337. doi: 10.1038/287335a0. [DOI] [PubMed] [Google Scholar]
  14. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  15. Pearson T. W., Anderson N. L. Use of high-resolution two-dimensional gel electrophoresis for analysis of monoclonal antibodies and their specific antigens. Methods Enzymol. 1983;92:196–220. doi: 10.1016/0076-6879(83)92019-0. [DOI] [PubMed] [Google Scholar]
  16. Perlmutter R. M., Crews S. T., Douglas R., Sorensen G., Johnson N., Nivera N., Gearhart P. J., Hood L. The generation of diversity in phosphorylcholine-binding antibodies. Adv Immunol. 1984;35:1–37. doi: 10.1016/s0065-2776(08)60572-6. [DOI] [PubMed] [Google Scholar]
  17. Raine C. S. Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis. Lab Invest. 1984 Jun;50(6):608–635. [PubMed] [Google Scholar]
  18. Romball C. G., Weigle W. O. A cyclical appearance of antibody-producing cells after a single injection of serum protein antigen. J Exp Med. 1973 Dec 1;138(6):1426–1442. doi: 10.1084/jem.138.6.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salier J. P., Glynn P., Goust J. M., Cuzner M. L. Distribution of nominal and latent IgG (Gm) allotypes in plaques of multiple sclerosis brain. Clin Exp Immunol. 1983 Dec;54(3):634–640. [PMC free article] [PubMed] [Google Scholar]
  20. Siskind G. W., Benacerraf B. Cell selection by antigen in the immune response. Adv Immunol. 1969;10:1–50. doi: 10.1016/s0065-2776(08)60414-9. [DOI] [PubMed] [Google Scholar]
  21. Tourtellotte W. W., Ma B. I., Brandes D. B., Walsh M. J., Potvin A. R. Quantification of de novo central nervous system IgG measles antibody synthesis in SSPE. Ann Neurol. 1981 Jun;9(6):551–556. doi: 10.1002/ana.410090607. [DOI] [PubMed] [Google Scholar]
  22. Tourtellotte W. W., Ma B. I. Multiple sclerosis: the blood-brain-barrier and the measurement of de novo central nervous system IgG synthesis. Neurology. 1978 Sep;28(9 Pt 2):76–83. doi: 10.1212/wnl.28.9_part_2.76. [DOI] [PubMed] [Google Scholar]
  23. Traugott U., Reinherz E. L., Raine C. S. Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science. 1983 Jan 21;219(4582):308–310. doi: 10.1126/science.6217550. [DOI] [PubMed] [Google Scholar]
  24. Vandvik B., Norrby E., Nordal H. J., Degré M. Oligoclonal measles virus-specific IgG antibodies isolated from cerebrospinal fluids, brain extracts, and sera from patients with subacute sclerosing panencephalitis and multiple sclerosis. Scand J Immunol. 1976;5(8):979–992. doi: 10.1111/j.1365-3083.1976.tb03050.x. [DOI] [PubMed] [Google Scholar]
  25. Vandvik B., Norrby E. Oligoclonal IgG antibody response in the central nervous system to different measles virus antigens in subacute sclerosing panencephalitis. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1060–1063. doi: 10.1073/pnas.70.4.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walsh M. J., Tourtellotte W. W., Roman J., Dreyer W. Immunoglobulin G, A, and M--clonal restriction in multiple sclerosis cerebrospinal fluid and serum--analysis by two-dimensional electrophoresis. Clin Immunol Immunopathol. 1985 Jun;35(3):313–327. doi: 10.1016/0090-1229(85)90092-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES