Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Jan 1;163(1):1–17. doi: 10.1084/jem.163.1.1

Studies of thymocytopoiesis in rats and mice. I. Kinetics of appearance of thymocytes using a direct intrathymic adoptive transfer assay for thymocyte precursors

PMCID: PMC2188012  PMID: 3510267

Abstract

We describe a quantitative intrathymic (i.t.) adoptive transfer system for detecting thymocyte precursor cells in rats and mice. In this system, the generation of donor-origin thymocytes is analyzed on the FACS after the injection of test cells directly into the thymus of sublethally irradiated, histocompatible, RT-7 (rat) or Ly-1 (mouse) alloantigen-disparate recipients. Like the standard i.v. adoptive transfer assays for prothymocytes, the i.t. transfer assay is time, dose, and irradiation dependent. However, unlike the i.v. assays, the i.t. assay is highly sensitive, independent of cell migration, and specific for T-lineage precursor cells. Thus, the i.t. system requires between 25- and 50-fold fewer precursor cells than do the i.v. systems to generate a given number of donor-origin thymocytes; it detects nonmigratory as well as migratory subsets of precursor cells; it detects prethymic and intrathymic precursor cells with equal facility; and it produces a discrete, self-limited wave of donor-origin thymocytes and peripheral T cells. Moreover, neither hemopoietic nor lymphopoietic stem cell chimerism occurs at extrathymic sites. Comparison of the kinetics of thymocytopoiesis in the i.t. and i.v. transfer systems suggest that the seeding efficiency of prothymocytes in the i.v. assay approximates 0.04; the lag phase of the time-response curve is not due to a delay in the entry of prothymocytes into the thymus; and the relative amount of thymocyte precursor activity in various lymphohemopoietic tissues is highest in bone marrow, lowest (or absent) in lymph node, and intermediate in spleen, blood, and thymus. Moreover, the occurrence of saturation kinetics in the dose-response curve of the i.t. system supports the hypothesis that a finite number of microenvironmental niches for prothymocytes may exist in the thymus. These initial observations will require confirmation and extension in future studies. However, based on the present findings and related observations, we anticipate that the i.t. adoptive transfer system will contribute importantly to the definitive analysis of both normal and abnormal thymocytopoiesis.

Full Text

The Full Text of this article is available as a PDF (1,004.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basch R. S., Kadish J. L., Goldstein G. Hematopoietic thymocyte precursors: IV. Enrichment of the precursors and evidence for heterogeneity. J Exp Med. 1978 Jun 1;147(6):1843–1848. doi: 10.1084/jem.147.6.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boersma W. J., Daculsi R., van der Westen G. Post-irradiation thymocyte regeneration after bone marrow transplantation. II. Physical characteristics of thymocyte progenitor cells. Cell Tissue Kinet. 1981 Mar;14(2):197–210. doi: 10.1111/j.1365-2184.1981.tb00523.x. [DOI] [PubMed] [Google Scholar]
  3. Boersma W., Betel I., Daculsi R., van der Westen G. Post-irradiation thymocyte regeneration after bone marrow transplantation. I. Regeneration and quantification of thymocyte progenitor cells in the bone marrow. Cell Tissue Kinet. 1981 Mar;14(2):179–196. doi: 10.1111/j.1365-2184.1981.tb00522.x. [DOI] [PubMed] [Google Scholar]
  4. Bollum F. J. Antibody to terminal deoxynucleotidyl transferase. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4119–4122. doi: 10.1073/pnas.72.10.4119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ceredig R., MacDonald H. R. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras. J Immunol. 1982 Feb;128(2):614–620. [PubMed] [Google Scholar]
  6. Ely J. M., Greiner D. L., Lubaroff D. M., Fitch F. W. Characterization of monoclonal antibodies that define rat T cell alloantigens. J Immunol. 1983 Jun;130(6):2798–2803. [PubMed] [Google Scholar]
  7. Fowlkes B. J., Edison L., Mathieson B. J., Chused T. M. Early T lymphocytes. Differentiation in vivo of adult intrathymic precursor cells. J Exp Med. 1985 Sep 1;162(3):802–822. doi: 10.1084/jem.162.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldschneider I., Ahmed A., Bollum F. J., Goldstein A. L. Induction of terminal deoxynucleotidyl transferase and Lyt antigens with thymosin: identification of multiple subsets of prothymocytes in mouse bone marrow and spleen. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2469–2473. doi: 10.1073/pnas.78.4.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldschneider I., Metcalf D., Battye F., Mandel T. Analysis of rat hemopoietic cells on the fluorescence-activated cell sorter. I. Isolation of pluripotent hemopoietic stem cells and granulocyte-macrophage progenitor cells. J Exp Med. 1980 Aug 1;152(2):419–437. doi: 10.1084/jem.152.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green M. C., Shultz L. D. Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered. 1975 Sep-Oct;66(5):250–258. doi: 10.1093/oxfordjournals.jhered.a108625. [DOI] [PubMed] [Google Scholar]
  11. Gregoire K. E., Goldschneider I., Barton R. W., Bollum F. J. Intracellular distribution of terminal deoxynucleotidyl transferase in rat bone marrow and thymus. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3993–3996. doi: 10.1073/pnas.74.9.3993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greiner D. L., Goldschneider I., Barton R. W. Identification of thymocyte progenitors in hemopoietic tissues of the rat. II. Enrichment of functional prothymocytes on the fluorescence-activated cell sorter. J Exp Med. 1982 Nov 1;156(5):1448–1460. doi: 10.1084/jem.156.5.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greiner D. L., Goldschneider I., Barton R. W., Lubaroff D. M. A quantitative assay system for thymocyte regeneration in the rat. Transplant Proc. 1981 Jun;13(2):1457–1459. [PubMed] [Google Scholar]
  14. Greiner D. L., Goldschneider I., Lubaroff D. M. Identification of thymocyte progenitors in hemopoietic tissues of the rat. I. A quantitative assay system for thymocyte regeneration. Thymus. 1984;6(3):181–199. [PubMed] [Google Scholar]
  15. Gutman G. A. Rat kappa chain allotypes. IV. Monoclonal antibodies to distinct RI-1b specificities. Hybridoma. 1982;1(2):133–138. doi: 10.1089/hyb.1.1982.1.133. [DOI] [PubMed] [Google Scholar]
  16. Hunt S. V., Fowler M. H. A repopulation assay for B and T lymphocyte stem cells employing radiation chimaeras. Cell Tissue Kinet. 1981 Jul;14(4):445–464. doi: 10.1111/j.1365-2184.1981.tb00551.x. [DOI] [PubMed] [Google Scholar]
  17. Jotereau F. V., Le Douarin N. M. Demonstration of a cyclic renewal of the lymphocyte precursor cells in the quail thymus during embryonic and perinatal life. J Immunol. 1982 Nov;129(5):1869–1877. [PubMed] [Google Scholar]
  18. Kadish J. L., Basch R. S. Hematopoietic thymocyte precursors. I. Assay and kinetics of the appearance of progeny. J Exp Med. 1976 May 1;143(5):1082–1099. doi: 10.1084/jem.143.5.1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kadish J. L., Basch R. S. Hematopoietic thymocyte precursors. III. A population of thymocytes with the capacity to return ("home") to the thymus. Cell Immunol. 1977 Apr;30(1):12–24. doi: 10.1016/0008-8749(77)90043-0. [DOI] [PubMed] [Google Scholar]
  20. Lanier L. L., Gutman G. A., Lewis D. E., Griswold S. T., Warner N. L. Monoclonal antibodies against rat immunoglobulin kappa chains. Hybridoma. 1982;1(2):125–131. doi: 10.1089/hyb.1.1982.1.125. [DOI] [PubMed] [Google Scholar]
  21. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  22. Mason D. W., Arthur R. P., Dallman M. J., Green J. R., Spickett G. P., Thomas M. L. Functions of rat T-lymphocyte subsets isolated by means of monoclonal antibodies. Immunol Rev. 1983;74:57–82. doi: 10.1111/j.1600-065x.1983.tb01084.x. [DOI] [PubMed] [Google Scholar]
  23. Sharrow S. O., Singer A., Hammerling U., Mathieson B. J. Phenotypic characterization of early events of thymus repopulation in radiation bone marrow chimeras. Transplantation. 1983 Apr;35(4):355–362. doi: 10.1097/00007890-198304000-00019. [DOI] [PubMed] [Google Scholar]
  24. Springer T. A., Bhattacharya A., Cardoza J. T., Sanchez-Madrid F. Monoclonal antibodies specific for rat IgG1, IgG2a, and IgG2b subclasses, and kappa chain monotypic and allotypic determinants: reagents for use with rat monoclonal antibodies. Hybridoma. 1982;1(3):257–273. doi: 10.1089/hyb.1.1982.1.257. [DOI] [PubMed] [Google Scholar]
  25. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES