Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Apr 1;163(4):759–773. doi: 10.1084/jem.163.4.759

The cytotoxic T cell response to the male-specific histocompatibility antigen (H-Y) is controlled by two dominant immune response genes, one in the MHC, the other in the Tar alpha-locus

PMCID: PMC2188073  PMID: 3081679

Abstract

The genetic control of the cytotoxic T-cell response to the male histocompatibility antigen, H-Y, was analyzed in BALB/cKe(C) and SJL/J(J) which are both nonresponders. However, the (C X J)F1 hybrid is a responder. Therefore, two dominant complementing genes are involved. Analysis of a set of (C X J) recombinant inbred (RI) lines reveals that these two complementing gene products are a restricting element (R) encoded by the H-2 (MHC) locus on chromosome 17 and a subunit of the T- cell receptor (anti-R) encoded by the Tar alpha-locus on chromosome 14. The order and orientation of gene segments within the Tar alpha-locus has also been established relative to the chromosome 14 marker, Es-10. The existence of two RI strains which are recombinant at chromosome 14 has made it possible to determine that this order is Es-10--v alpha-1-- v alpha-2--[C alpha--Np-2]--centromere. The implications of these data for the antigen-specific regulation of immune responsiveness are discussed in terms of the dual recognitive-single receptor model.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behlke M. A., Spinella D. G., Chou H. S., Sha W., Hartl D. L., Loh D. Y. T-cell receptor beta-chain expression: dependence on relatively few variable region genes. Science. 1985 Aug 9;229(4713):566–570. doi: 10.1126/science.3875151. [DOI] [PubMed] [Google Scholar]
  2. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohn M. The T-cell receptor mediating restrictive recognition of antigen. Cell. 1983 Jul;33(3):657–669. doi: 10.1016/0092-8674(83)90009-0. [DOI] [PubMed] [Google Scholar]
  4. Collins M. K., Owen M. J. The T cell antigen receptor. Biochem J. 1985 Sep 1;230(2):281–291. doi: 10.1042/bj2300281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cory S., Adams J. M. Deletions are associated with somatic rearrangement of immunoglobulin heavy chain genes. Cell. 1980 Jan;19(1):37–51. doi: 10.1016/0092-8674(80)90386-4. [DOI] [PubMed] [Google Scholar]
  6. Dembić Z., Bannwarth W., Taylor B. A., Steinmetz M. The gene encoding the T-cell receptor alpha-chain maps close to the Np-2 locus on mouse chromosome 14. Nature. 1985 Mar 21;314(6008):271–273. doi: 10.1038/314271a0. [DOI] [PubMed] [Google Scholar]
  7. Epstein R., Lehmann K., Cohn M. Induction of lambda 1-immunoglobulin is determined by a regulatory gene (r lambda 1) linked (or identical) to the structural (c lambda 1) gene. J Exp Med. 1983 May 1;157(5):1681–1686. doi: 10.1084/jem.157.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Epstein R., Roehm N., Marrack P., Kappler J., Davis M., Hedrick S., Cohn M. Genetic markers of the antigen-specific T cell receptor locus. J Exp Med. 1985 May 1;161(5):1219–1224. doi: 10.1084/jem.161.5.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fierz W., Farmer G. A., Sheena J. H., Simpson E. Genetic analysis of the non-H-2-linked Ir genes controlling the cytotoxic T-cell response to H-Y in H-2d mice. Immunogenetics. 1982;16(6):593–601. doi: 10.1007/BF00372028. [DOI] [PubMed] [Google Scholar]
  10. Heber-Katz E., Hansburg D., Schwartz R. H. The Ia molecule of the antigen-presenting cell plays a critical role in immune response gene regulation of T cell activation. J Mol Cell Immunol. 1983;1(1):3–18. [PubMed] [Google Scholar]
  11. Hurme M., Hetherington C. M., Chandler P. R., Simpson E. Cytotoxic T-cell responses to H-Y: mapping of the Ir genes. J Exp Med. 1978 Mar 1;147(3):758–767. doi: 10.1084/jem.147.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kranz D. M., Saito H., Heller M., Takagaki Y., Haas W., Eisen H. N., Tonegawa S. Limited diversity of the rearranged T-cell gamma gene. 1985 Feb 28-Mar 6Nature. 313(6005):752–755. doi: 10.1038/313752a0. [DOI] [PubMed] [Google Scholar]
  13. Langman R. E., Cohn M. T cells function via restricted recognition of antigen, not antigen-restricted recognition. Cell Immunol. 1985 Sep;94(2):598–608. doi: 10.1016/0008-8749(85)90283-7. [DOI] [PubMed] [Google Scholar]
  14. Maniatis T., Jeffrey A., Kleid D. G. Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1184–1188. doi: 10.1073/pnas.72.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pernis B., Axel R. A one and a half receptor model for MHC-restricted antigen recognition by T lymphocytes. Cell. 1985 May;41(1):13–16. doi: 10.1016/0092-8674(85)90053-4. [DOI] [PubMed] [Google Scholar]
  16. Sakano T., Wilbur S. M., Bonavida B., Cohn M. Non-H-2-linked control of in vivo growth of SJL/J-derived reticulum cell sarcoma in recombinant inbred strains between BALB/cKe and SJL/J mice. J Natl Cancer Inst. 1985 Oct;75(4):669–673. [PubMed] [Google Scholar]
  17. Schwartz R. H. A clonal deletion model for Ir gene control of the immune response. Scand J Immunol. 1978;7(1):3–10. doi: 10.1111/j.1365-3083.1978.tb00420.x. [DOI] [PubMed] [Google Scholar]
  18. Skow L. C., Donner M. E. The locus encoding alpha A-crystallin is closely linked to H-2K on mouse chromosome 17. Genetics. 1985 Aug;110(4):723–732. doi: 10.1093/genetics/110.4.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  20. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. White J., Haskins K. M., Marrack P., Kappler J. Use of I region-restricted, antigen-specific T cell hybridomas to produce idiotypically specific anti-receptor antibodies. J Immunol. 1983 Mar;130(3):1033–1037. [PubMed] [Google Scholar]
  22. Wikstrand C. J., Haughton G., Bailey D. W. The male antigen. II. Regulation of the primary and secondary responses to H-Y by H-2 associated genes. Cell Immunol. 1974 Feb;10(2):238–247. doi: 10.1016/0008-8749(74)90115-4. [DOI] [PubMed] [Google Scholar]
  23. Womack J. E., Davisson M. T., Eicher E. M., Kendall D. A. Mapping of nucleoside phosphorylase (Np-1) and esterase 10 (Es-10) on mouse chromosome 14. Biochem Genet. 1977 Apr;15(3-4):347–355. doi: 10.1007/BF00484465. [DOI] [PubMed] [Google Scholar]
  24. Yagüe J., White J., Coleclough C., Kappler J., Palmer E., Marrack P. The T cell receptor: the alpha and beta chains define idiotype, and antigen and MHC specificity. Cell. 1985 Aug;42(1):81–87. doi: 10.1016/s0092-8674(85)80103-3. [DOI] [PubMed] [Google Scholar]
  25. von Boehmer H., Turton K., Haas W. The role of the left end of the H-2b haplotype in the male-specific cytotoxic T cell response. Eur J Immunol. 1979 Nov;9(11):913–915. doi: 10.1002/eji.1830091115. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES