Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Apr 1;163(4):826–836. doi: 10.1084/jem.163.4.826

Identification of a second class of IgG Fc receptors on human neutrophils. A 40 kilodalton molecule also found on eosinophils

PMCID: PMC2188084  PMID: 3005468

Abstract

We describe a newly recognized 40 kD FcR for IgG on human neutrophilic granulocytes. An mAb (IV3) developed against the IgG FcR of K562 cells, and specific as well for a 40 kD FcR on human monocytes and platelets, was found to purify by affinity adsorption a 40 kD protein from detergent lysates of surface-radioiodinated neutrophils. This protein, proteolytically degraded to 33 kD when purified in the absence of diisopropylfluorophosphate, is distinct from the 51-73 kD protein precipitated by the anti-neutrophil FcR mAb, 3G8, previously described by others. Complete inhibition of binding of rabbit IgG-coated erythrocytes to neutrophils was achieved only when both antibodies, IV3 and 3G8, were used. Fab fragments of IV3 were as effective inhibitors as the intact molecule. IV3 IgG or Fab fragments completely and selectively inhibited immune complex-mediated generation of superoxide by human neutrophils; superoxide generation by other stimulants was not abrogated by IV3. This antibody (IV3) bound also to human eosinophils and completely inhibited the binding of IgG-coated erythrocytes to eosinophils. IV3 appears to define the human homolog of the murine macrophage FcRII identified initially by mAb 2.4G2 and present in the mouse on both neutrophils and eosinophils.

Full Text

The Full Text of this article is available as a PDF (796.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. L. Isolation of the receptor for IgG from a human monocyte cell line (U937) and from human peripheral blood monocytes. J Exp Med. 1982 Dec 1;156(6):1794–1806. doi: 10.1084/jem.156.6.1794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball E. D., Fanger M. W. The use of myeloid-specific monoclonal antibodies in the diagnosis of leukemia. Diagn Immunol. 1983;1(2):90–95. [PubMed] [Google Scholar]
  3. Cohen H. J., Chovaniec M. E. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system. J Clin Invest. 1978 Apr;61(4):1081–1087. doi: 10.1172/JCI109007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen L., Sharp S., Kulczycki A., Jr Human monocytes, B lymphocytes, and non-B lymphocytes each have structurally unique Fc gamma receptors. J Immunol. 1983 Jul;131(1):378–383. [PubMed] [Google Scholar]
  5. Fleit H. B., Wright S. D., Unkeless J. C. Human neutrophil Fc gamma receptor distribution and structure. Proc Natl Acad Sci U S A. 1982 May;79(10):3275–3279. doi: 10.1073/pnas.79.10.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  7. Goldstein I. M., Roos D., Kaplan H. B., Weissmann G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest. 1975 Nov;56(5):1155–1163. doi: 10.1172/JCI108191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greenstein J. L., Solomon A., Abraham G. N. Monoclonal antibodies reactive with idiotypic and variable-region specific determinants on human immunoglobulins. Immunology. 1984 Jan;51(1):17–25. [PMC free article] [PubMed] [Google Scholar]
  9. Henson P. M. Interaction of cells with immune complexes: adherence, release of constituents, and tissue injury. J Exp Med. 1971 Sep 1;134(3):114–135. [PMC free article] [PubMed] [Google Scholar]
  10. Henson P. M. The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J Immunol. 1971 Dec;107(6):1535–1546. [PubMed] [Google Scholar]
  11. Heusser C. H., Anderson C. L., Grey H. M. Receptors for IgG: subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line. J Exp Med. 1977 May 1;145(5):1316–1327. doi: 10.1084/jem.145.5.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones D. H., Looney R. J., Anderson C. L. Two distinct classes of IgG Fc receptors on a human monocyte line (U937) defined by differences in binding of murine IgG subclasses at low ionic strength. J Immunol. 1985 Nov;135(5):3348–3353. [PubMed] [Google Scholar]
  13. Kulczycki A., Jr Human neutrophils and eosinophils have structurally distinct Fc gamma receptors. J Immunol. 1984 Aug;133(2):849–854. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lovchik J. C., Hong R. Antibody-dependent cell-mediated cytolysis (ADCC): analyses and projections. Prog Allergy. 1977;22:1–44. [PubMed] [Google Scholar]
  16. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  17. López A. F., Battye F. L., Vadas M. A. Fc receptors on mouse neutrophils and eosinophils: antigenic characteristics, isotype specificity and relative cell membrane density measured by flow cytometry. Immunology. 1985 May;55(1):125–133. [PMC free article] [PubMed] [Google Scholar]
  18. MASSEY V. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim Biophys Acta. 1959 Jul;34:255–256. doi: 10.1016/0006-3002(59)90259-8. [DOI] [PubMed] [Google Scholar]
  19. Mantovani B. Different roles of IgG and complement receptors in phagocytosis by polymorphonuclear leukocytes. J Immunol. 1975 Jul;115(1):15–17. [PubMed] [Google Scholar]
  20. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  21. Newburger P. E., Chovaniec M. E., Cohen H. J. Activity and activation of the granulocyte superoxide-generating system. Blood. 1980 Jan;55(1):85–92. [PubMed] [Google Scholar]
  22. Rosenfeld S. I., Looney R. J., Leddy J. P., Phipps D. C., Abraham G. N., Anderson C. L. Human platelet Fc receptor for immunoglobulin G. Identification as a 40,000-molecular-weight membrane protein shared by monocytes. J Clin Invest. 1985 Dec;76(6):2317–2322. doi: 10.1172/JCI112242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Scribner D. J., Fahrney D. Neutrophil receptors for IgG and complement: their roles in the attachment and ingestion phases of phagocytosis. J Immunol. 1976 Apr;116(4):892–897. [PubMed] [Google Scholar]
  24. Unkeless J. C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979 Sep 19;150(3):580–596. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Unkeless J. C. The presence of two Fc receptors on mouse macrophages: evidence from a variant cell line and differential trypsin sensitivity. J Exp Med. 1977 Apr 1;145(4):931–945. doi: 10.1084/jem.145.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yazdanbakhsh M., Eckmann C. M., Roos D. Characterization of the interaction of human eosinophils and neutrophils with opsonized particles. J Immunol. 1985 Aug;135(2):1378–1384. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES