Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 May 1;163(5):1100–1112. doi: 10.1084/jem.163.5.1100

Antigen-driven long term-cultured T cells proliferate in vivo, distribute widely, mediate specific tumor therapy, and persist long- term as functional memory T cells

PMCID: PMC2188098  PMID: 3084700

Abstract

Mice bearing disseminated syngeneic FBL-3 leukemia were treated with cyclophosphamide plus long term-cultured T cells immune to FBL-3. The cultured T cells for therapy had been induced to grow in vitro for 62 d by intermittent stimulation with irradiated FBL-3. At the time of therapy, such antigen-driven long term-cultured T cells were greatly expanded in number, proliferated in vitro in response to FBL-3, and were specifically cytotoxic. Following adoptive transfer, donor T cells persisting in the host were identified and counted using donor and host mice congenic for the T cell marker Thy-1. The results show that antigen-driven long term-cultured T cells proliferated rapidly in vivo, distributed widely in host lymphoid organs, and were effective in tumor therapy. Moreover, the already rapid in vivo growth rate of donor T cells could be augmented by administration of exogenous IL-2. When cured mice were examined 120 d after therapy, donor L3T4+ T cells and donor Lyt-2+ T cells could be found in large numbers in host ascites, spleen, and mesenteric and axillary lymph nodes. The persisting donor T cells proliferated in vitro, and became specifically cytotoxic in response to FBL-3, demonstrating that antigen-driven long term-cultured T cells can persist long term in vivo and provide immunologic memory.

Full Text

The Full Text of this article is available as a PDF (810.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binz H., Fenner M., Engel R., Wigzell H. Studies on chemically induced rat tumors. II. Partial protection against syngeneic lethal tumors by cloned syngeneic cytotoxic T lymphocytes. Int J Cancer. 1983 Oct 15;32(4):491–500. doi: 10.1002/ijc.2910320417. [DOI] [PubMed] [Google Scholar]
  2. Byrne J. A., Oldstone M. B. Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus in vivo. J Virol. 1984 Sep;51(3):682–686. doi: 10.1128/jvi.51.3.682-686.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carroll A. M., Palladino M. A., Oettgen H., De Sousa M. In vivo localization of cloned IL-2-dependent T cells. Cell Immunol. 1983 Feb 15;76(1):69–80. doi: 10.1016/0008-8749(83)90349-0. [DOI] [PubMed] [Google Scholar]
  4. Cheever M. A., Greenberg P. D., Fefer A., Gillis S. Augmentation of the anti-tumor therapeutic efficacy of long-term cultured T lymphocytes by in vivo administration of purified interleukin 2. J Exp Med. 1982 Apr 1;155(4):968–980. doi: 10.1084/jem.155.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheever M. A., Greenberg P. D., Fefer A. Specific adoptive therapy of established leukemia with syngeneic lymphocytes sequentially immunized in vivo and in vitro and nonspecifically expanded by culture with Interleukin 2. J Immunol. 1981 Apr;126(4):1318–1322. [PubMed] [Google Scholar]
  6. Cheever M. A., Greenberg P. D., Irle C., Thompson J. A., Urdal D. L., Mochizuki D. Y., Henney C. S., Gillis S. Interleukin 2 administered in vivo induces the growth of cultured T cells in vivo. J Immunol. 1984 May;132(5):2259–2265. [PubMed] [Google Scholar]
  7. Cheever M. A., Thompson J. A., Kern D. E., Greenberg P. D. Interleukin 2 (IL 2) administered in vivo: influence of IL 2 route and timing on T cell growth. J Immunol. 1985 Jun;134(6):3895–3900. [PubMed] [Google Scholar]
  8. Conta B. S., Powell M. B., Ruddle N. H. Activation of Lyt-1+ and Lyt-2+ T cell cloned lines: stimulation of proliferation, lymphokine production, and self-destruction. J Immunol. 1985 Apr;134(4):2185–2190. [PubMed] [Google Scholar]
  9. Dailey M. O., Fathman C. G., Butcher E. C., Pillemer E., Weissman I. Abnormal migration of T lymphocyte clones. J Immunol. 1982 May;128(5):2134–2136. [PubMed] [Google Scholar]
  10. Dailey M. O., Gallatin W. M., Weissman I. L. The in vivo behavior of T cell clones: altered migration due to loss of the lymphocyte surface homing receptor. J Mol Cell Immunol. 1985;2(1):27–36. [PubMed] [Google Scholar]
  11. Engers H. D., Glasebrook A. L., Sorenson G. D. Allogeneic tumor rejection induced by the intravenous injection of Lyt-2+ cytolytic T lymphocyte clones. J Exp Med. 1982 Oct 1;156(4):1280–1285. doi: 10.1084/jem.156.4.1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fefer A., Einstein A. B., Jr, Cheever M. A., Berenson J. R. Models for syngeneic adoptive chemoimmunotherapy of murine leukemias. Ann N Y Acad Sci. 1976;276:573–583. doi: 10.1111/j.1749-6632.1976.tb41684.x. [DOI] [PubMed] [Google Scholar]
  13. Fernandez-Cruz E., Halliburton B., Feldman J. D. In vivo elimination by specific effector cells of an established syngeneic rat moloney virus-induced sarcoma. J Immunol. 1979 Oct;123(4):1772–1777. [PubMed] [Google Scholar]
  14. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  15. Glasebrook A. L., Fitch F. W. Alloreactive cloned T cell lines. I. Interactions between cloned amplifier and cytolytic T cell lines. J Exp Med. 1980 Apr 1;151(4):876–895. doi: 10.1084/jem.151.4.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Greenberg P. D., Cheever M. A., Fefer A. Detection of early and delayed antitumor effects following curative adoptive chemoimmunotherapy of established leukemia. Cancer Res. 1980 Dec;40(12):4428–4432. [PubMed] [Google Scholar]
  17. Greenberg P. D., Cheever M. A., Fefer A. Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1+2- lymphocytes. J Exp Med. 1981 Sep 1;154(3):952–963. doi: 10.1084/jem.154.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Greenberg P. D., Cheever M. A., Fefer A. H-2 restriction of adoptive immunotherapy of advanced tumors. J Immunol. 1981 Jun;126(6):2100–2103. [PubMed] [Google Scholar]
  19. Greenberg P. D., Cheever M. A. Treatment of disseminated leukemia with cyclophosphamide and immune cells: tumor immunity reflects long-term persistence of tumor-specific donor T cells. J Immunol. 1984 Dec;133(6):3401–3407. [PubMed] [Google Scholar]
  20. Greenberg P. D., Kern D. E., Cheever M. A. Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2- T cells. Tumor eradication does not require participation of cytotoxic T cells. J Exp Med. 1985 May 1;161(5):1122–1134. doi: 10.1084/jem.161.5.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kedar E., Weiss D. W. The in vitro generation of effector lymphocytes and their employment in tumor immunotherapy. Adv Cancer Res. 1983;38:171–287. doi: 10.1016/s0065-230x(08)60190-6. [DOI] [PubMed] [Google Scholar]
  22. Lotze M. T., Line B. R., Mathisen D. J., Rosenberg S. A. The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor (TCGF): implications for the adoptive immunotherapy of tumors. J Immunol. 1980 Oct;125(4):1487–1493. [PubMed] [Google Scholar]
  23. Lukacher A. E., Braciale V. L., Braciale T. J. In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J Exp Med. 1984 Sep 1;160(3):814–826. doi: 10.1084/jem.160.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matis L. A., Ruscetti S. K., Longo D. L., Jacobson S., Brown E. J., Zinn S., Kruisbeek A. M. Distinct proliferative T cell clonotypes are generated in response to a murine retrovirus-induced syngeneic T cell leukemia: viral gp70 antigen-specific MT4+ clones and Lyt-2+ cytolytic clones which recognize a tumor-specific cell surface antigen. J Immunol. 1985 Jul;135(1):703–713. [PubMed] [Google Scholar]
  25. Miller R. A., Maloney D. G., Warnke R., Levy R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med. 1982 Mar 4;306(9):517–522. doi: 10.1056/NEJM198203043060906. [DOI] [PubMed] [Google Scholar]
  26. Mitsuya H., Matis L. A., Megson M., Bunn P. A., Murray C., Mann D. L., Gallo R. C., Broder S. Generation of an HLA-restricted cytotoxic T cell line reactive against cultured tumor cells from a patient infected with human T cell leukemia/lymphoma virus. J Exp Med. 1983 Sep 1;158(3):994–999. doi: 10.1084/jem.158.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. North R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med. 1982 Apr 1;155(4):1063–1074. doi: 10.1084/jem.155.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Palladino M. A., Welte K., Carroll A. M., Oettgen H. F. Characterization of interleukin 2 (IL-2)-dependent cytotoxic T-cell clones. V. Transfer of resistance to allografts and tumor grafts requires exogenous IL-2. Cell Immunol. 1984 Jul;86(2):299–307. doi: 10.1016/0008-8749(84)90384-8. [DOI] [PubMed] [Google Scholar]
  29. Ramu A., Cohen L., Glaubiger D. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells. Cancer Res. 1984 May;44(5):1976–1980. [PubMed] [Google Scholar]
  30. Rosenberg S. A., Mulé J. J., Spiess P. J., Reichert C. M., Schwarz S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985 May 1;161(5):1169–1188. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rosenstein M., Rosenberg S. A. Generation of lytic and proliferative lymphoid clones to syngeneic tumor: in vitro and in vivo studies. J Natl Cancer Inst. 1984 May;72(5):1161–1165. [PubMed] [Google Scholar]
  32. Thor A., Horan Hand P., Wunderlich D., Caruso A., Muraro R., Schlom J. Monoclonal antibodies define differential ras gene expression in malignant and benign colonic diseases. Nature. 1984 Oct 11;311(5986):562–565. doi: 10.1038/311562a0. [DOI] [PubMed] [Google Scholar]
  33. Wagner H., Röllinghoff M. T-T-cell interactions during the vitro cytotoxic allograft responses. I. Soluble products from activated Lyl+ T cells trigger autonomously antigen-primed Ly23+ T cells to cell proliferation and cytolytic activity. J Exp Med. 1978 Dec 1;148(6):1523–1538. doi: 10.1084/jem.148.6.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zaleski M., Klein J. Genetic control of the immune response to Thy-1 antigens. Immunol Rev. 1978;38:120–162. doi: 10.1111/j.1600-065x.1978.tb00386.x. [DOI] [PubMed] [Google Scholar]
  35. Zamvil S., Nelson P., Trotter J., Mitchell D., Knobler R., Fritz R., Steinman L. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. 1985 Sep 26-Oct 2Nature. 317(6035):355–358. doi: 10.1038/317355a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES