Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 May 1;163(5):1132–1149. doi: 10.1084/jem.163.5.1132

The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol ester

PMCID: PMC2188099  PMID: 3517218

Abstract

Lymphocytes become adherent and aggregate after stimulation with phorbol esters such as PMA. Time-lapse video showed that aggregating cells were motile and exhibited vigorous pseudopodial movements. Adhesion sites were initiated between pseudopodia of neighboring cells, and then moved to the uropod. PMA-stimulated aggregation by EBV- transformed B cell lines, SKW-3 (a T cell line), differentiated U937 (a monocytic line), and blood lymphocytes was inhibited by mAbs to LFA-1. A number of different mAb to the LFA-1 alpha and beta subunits and F(ab')2 and Fab' fragments inhibited aggregation. Furthermore, lymphoblasts from normal individuals, but not from LFA-1-deficient patients, aggregated in response to PMA. These findings suggest LFA-1 is critically involved in stimulated lymphocyte adhesion. LFA-1 expression was not increased by PMA stimulation, showing that other mechanisms regulate LFA-1-dependent adherence. LFA-1-deficient patient cells were able to coaggregate with LFA-1+ cells, showing that aggregation is not mediated by like-like interactions between LFA-1 molecules on opposite cells. Aggregation was Mg+2-dependent, inhibited by cytochalasin B, and was reversed when LFA-1 mAb was added to preformed aggregates. Previous findings suggesting that LFA-1 is important in a wide variety of leukocyte functions are elucidated by this work, which shows that LFA-1 is a general leukocyte cell adhesion molecule, the activity of which is regulated by cell activation.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. C., Schmalsteig F. C., Finegold M. J., Hughes B. J., Rothlein R., Miller L. J., Kohl S., Tosi M. F., Jacobs R. L., Waldrop T. C. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis. 1985 Oct;152(4):668–689. doi: 10.1093/infdis/152.4.668. [DOI] [PubMed] [Google Scholar]
  2. Barnstable C. J., Bodmer W. F., Brown G., Galfre G., Milstein C., Williams A. F., Ziegler A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell. 1978 May;14(1):9–20. doi: 10.1016/0092-8674(78)90296-9. [DOI] [PubMed] [Google Scholar]
  3. Buescher E. S., Gaither T., Nath J., Gallin J. I. Abnormal adherence-related functions of neutrophils, monocytes, and Epstein-Barr virus-transformed B cells in a patient with C3bi receptor deficiency. Blood. 1985 Jun;65(6):1382–1390. [PubMed] [Google Scholar]
  4. Davignon D., Martz E., Reynolds T., Kürzinger K., Springer T. A. Lymphocyte function-associated antigen 1 (LFA-1): a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4535–4539. doi: 10.1073/pnas.78.7.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davignon D., Martz E., Reynolds T., Kürzinger K., Springer T. A. Monoclonal antibody to a novel lymphocyte function-associated antigen (LFA-1): mechanism of blockade of T lymphocyte-mediated killing and effects on other T and B lymphocyte functions. J Immunol. 1981 Aug;127(2):590–595. [PubMed] [Google Scholar]
  6. Erard F., Nabholz M., Dupuy-D'Angeac A., MacDonald H. R. Differential requirements for the induction of interleukin 2 responsiveness in L3T4+ and Lyt-2+ T cell subsets. J Exp Med. 1985 Nov 1;162(5):1738–1743. doi: 10.1084/jem.162.5.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galili U., Galili N., Vánky F., Klein E. Natural species-restricted attachment of human and murine T lymphocytes to various cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2396–2400. doi: 10.1073/pnas.75.5.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamann A., Jablonski-Westrich D., Raedler A., Thiele H. G. Lymphocytes express specific antigen-independent contact interaction sites upon activation. Cell Immunol. 1984 Jun;86(1):14–32. doi: 10.1016/0008-8749(84)90355-1. [DOI] [PubMed] [Google Scholar]
  9. Hoshino H., Miwa M., Fujiki H., Sugimura T. Aggregation of human lymphoblastoid cells by tumor-promoting phorbol esters and dihydroteleocidin B. Biochem Biophys Res Commun. 1980 Jul 31;95(2):842–848. doi: 10.1016/0006-291x(80)90864-5. [DOI] [PubMed] [Google Scholar]
  10. Kaufmann Y., Golstein P., Pierres M., Springer T. A., Eshhar Z. LFA-1 but not Lyt-2 is associated with killing activity of cytotoxic T lymphocyte hybridomas. Nature. 1982 Nov 25;300(5890):357–360. doi: 10.1038/300357a0. [DOI] [PubMed] [Google Scholar]
  11. Kohl S., Springer T. A., Schmalstieg F. C., Loo L. S., Anderson D. C. Defective natural killer cytotoxicity and polymorphonuclear leukocyte antibody-dependent cellular cytotoxicity in patients with LFA-1/OKM-1 deficiency. J Immunol. 1984 Dec;133(6):2972–2978. [PubMed] [Google Scholar]
  12. Krensky A. M., Mentzer S. J., Clayberger C., Anderson D. C., Schmalstieg F. C., Burakoff S. J., Springer T. A. Heritable lymphocyte function-associated antigen-1 deficiency: abnormalities of cytotoxicity and proliferation associated with abnormal expression of LFA-1. J Immunol. 1985 Nov;135(5):3102–3108. [PubMed] [Google Scholar]
  13. Krensky A. M., Robbins E., Springer T. A., Burakoff S. J. LFA-1, LFA-2, and LFA-3 antigens are involved in CTL-target conjugation. J Immunol. 1984 May;132(5):2180–2182. [PubMed] [Google Scholar]
  14. Krensky A. M., Sanchez-Madrid F., Robbins E., Nagy J. A., Springer T. A., Burakoff S. J. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J Immunol. 1983 Aug;131(2):611–616. [PubMed] [Google Scholar]
  15. Kürzinger K., Reynolds T., Germain R. N., Davignon D., Martz E., Springer T. A. A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure. J Immunol. 1981 Aug;127(2):596–602. [PubMed] [Google Scholar]
  16. Martz E., Davignon D., Kürzinger K., Springer T. A. The molecular basis for cytolytic T lymphocyte function: analysis with blocking monoclonal antibodies. Adv Exp Med Biol. 1982;146:447–468. doi: 10.1007/978-1-4684-8959-0_27. [DOI] [PubMed] [Google Scholar]
  17. Martz E. Immune T lymphocyte to tumor cell adhesion. Magnesium sufficient, calcium insufficient. J Cell Biol. 1980 Mar;84(3):584–598. doi: 10.1083/jcb.84.3.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mentzer S. J., Gromkowski S. H., Krensky A. M., Burakoff S. J., Martz E. LFA-1 membrane molecule in the regulation of homotypic adhesions of human B lymphocytes. J Immunol. 1985 Jul;135(1):9–11. [PubMed] [Google Scholar]
  19. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science. 1984 Sep 21;225(4668):1365–1370. doi: 10.1126/science.6147898. [DOI] [PubMed] [Google Scholar]
  20. Parham P., Androlewicz M. J., Brodsky F. M., Holmes N. J., Ways J. P. Monoclonal antibodies: purification, fragmentation and application to structural and functional studies of class I MHC antigens. J Immunol Methods. 1982 Sep 17;53(2):133–173. doi: 10.1016/0022-1759(82)90137-5. [DOI] [PubMed] [Google Scholar]
  21. Patarroyo M., Biberfeld P., Klein E., Klein G. 12-O- tetradecanoylphorbol- 13 acetate (TPA) treatment elevates the natural killer (NK) sensitivity of certain human lymphoid lines. Cell Immunol. 1981 Sep 15;63(2):237–248. doi: 10.1016/0008-8749(81)90003-4. [DOI] [PubMed] [Google Scholar]
  22. Patarroyo M., Gahmberg C. G. Phorbol 12,13-dibutyrate enhances lateral redistribution of membrane glycoproteins in human blood lymphocytes. Eur J Immunol. 1984 Sep;14(9):781–787. doi: 10.1002/eji.1830140904. [DOI] [PubMed] [Google Scholar]
  23. Patarroyo M., Yogeeswaran G., Biberfeld P., Klein E., Klein G. Morphological changes, cell aggregation and cell membrane alterations caused by phorbol 12,13-dibutyrate in human blood lymphocytes. Int J Cancer. 1982 Dec 15;30(6):707–717. doi: 10.1002/ijc.2910300606. [DOI] [PubMed] [Google Scholar]
  24. Pierres M., Goridis C., Golstein P. Inhibition of murine T cell-mediated cytolysis and T cell proliferation by a rat monoclonal antibody immunoprecipitating two lymphoid cell surface polypeptides of 94 000 and 180 000 molecular weight. Eur J Immunol. 1982 Jan;12(1):60–69. doi: 10.1002/eji.1830120112. [DOI] [PubMed] [Google Scholar]
  25. Sanchez-Madrid F., Krensky A. M., Ware C. F., Robbins E., Strominger J. L., Burakoff S. J., Springer T. A. Three distinct antigens associated with human T-lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7489–7493. doi: 10.1073/pnas.79.23.7489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sanchez-Madrid F., Nagy J. A., Robbins E., Simon P., Springer T. A. A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med. 1983 Dec 1;158(6):1785–1803. doi: 10.1084/jem.158.6.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sarmiento M., Dialynas D. P., Lancki D. W., Wall K. A., Lorber M. I., Loken M. R., Fitch F. W. Cloned T lymphocytes and monoclonal antibodies as probes for cell surface molecules active in T cell-mediated cytolysis. Immunol Rev. 1982;68:135–169. doi: 10.1111/j.1600-065x.1982.tb01063.x. [DOI] [PubMed] [Google Scholar]
  28. Springer T. A., Thompson W. S., Miller L. J., Schmalstieg F. C., Anderson D. C. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J Exp Med. 1984 Dec 1;160(6):1901–1918. doi: 10.1084/jem.160.6.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES