Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 May 1;163(5):1113–1131. doi: 10.1084/jem.163.5.1113

Oxygen-independent killing by alveolar macrophages

PMCID: PMC2188110  PMID: 3009680

Abstract

We have found that normal alveolar macrophages can kill an intracellular parasite by a mechanism that does not involve toxic metabolites of oxygen. We studied the interaction between Toxoplasma gondii and rat alveolar macrophages in vitro. We were interested in Toxoplasma because it causes pneumonia in immunosuppressed patients but not in healthy individuals, and we chose the rat because it resembles immunocompetent human subjects in being resistant to T. gondii. Resident rat alveolar macrophages could kill large numbers of T. gondii. This occurred without a respiratory burst as judged by intracellular reduction of nitroblue tetrazolium and quantitative release of superoxide. Furthermore, scavengers of toxic oxygen metabolites had no effect on the toxoplasmacidal activity of the alveolar macrophages, nor did prior exhaustion of their respiratory burst with PMA. Whereas acid pH (e.g., 4.5-6.0) rapidly kills extracellular T. gondii, raising of the intralysosomal acid pH of rat alveolar macrophages by incubating them with weak bases did not inhibit their ability to kill T. gondii. Killing of Toxoplasma occurred within 1 h of initial exposure to the alveolar macrophages. However, there was no evidence that killing preceded ingestion; Toxoplasma attached to the surface of the cell appeared viable, and when phagocytosis was blocked with sodium fluoride the organisms survived. These results indicate that rat alveolar macrophages possess a powerful nonoxidative microbicidal mechanism, which is distinct from acidification of the phagolysosome but which probably involves phagosome formation. This mechanism may be clinically relevant, for we have recently observed that human alveolar macrophages also kill T. gondii by an oxygen- independent process.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S. E., Jr, Remington J. S. Effect of normal and activated human macrophages on Toxoplasma gondii. J Exp Med. 1974 May 1;139(5):1154–1174. doi: 10.1084/jem.139.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chinchilla M., Frenkel J. K. Mediation of immunity to intracellular infection (Toxoplasma and Besnoitia) within somatic cells. Infect Immun. 1978 Mar;19(3):999–1012. doi: 10.1128/iai.19.3.999-1012.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chinchilla M., Guerrero O. M., Solano E. Lack of multiplication of Toxoplasma in macrophages of rats in vitro. J Parasitol. 1982 Oct;68(5):952–955. [PubMed] [Google Scholar]
  4. Freedman V. H., Gorrell T. E., Nathan C. F., Copeland C. S., Silverstein S. C. Bacillus Calmette-Guérin-activated murine macrophages kill syngeneic melanoma cells under strict anaerobic conditions. J Exp Med. 1984 Jul 1;160(1):94–107. doi: 10.1084/jem.160.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GREEN G. M., KASS E. H. THE ROLE OF THE ALVEOLAR MACROPHAGE IN THE CLEARANCE OF BACTERIA FROM THE LUNG. J Exp Med. 1964 Jan 1;119:167–176. doi: 10.1084/jem.119.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geisow M. J., D'Arcy Hart P., Young M. R. Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J Cell Biol. 1981 Jun;89(3):645–652. doi: 10.1083/jcb.89.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerberick G. F., Willoughby J. B., Willoughby W. F. Serum factor requirement for reactive oxygen intermediate release by rabbit alveolar macrophages. J Exp Med. 1985 Feb 1;161(2):392–408. doi: 10.1084/jem.161.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein E., Lippert W., Warshauer D. Pulmonary alveolar macrophage. Defender against bacterial infection of the lung. J Clin Invest. 1974 Sep;54(3):519–528. doi: 10.1172/JCI107788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goren M. B., D'Arcy Hart P., Young M. R., Armstrong J. A. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2510–2514. doi: 10.1073/pnas.73.7.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goren M. B., Swendsen C. L., Fiscus J., Miranti C. Fluorescent markers for studying phagosome-lysosome fusion. J Leukoc Biol. 1984 Sep;36(3):273–292. doi: 10.1002/jlb.36.3.273. [DOI] [PubMed] [Google Scholar]
  11. Hoff R. L., Frenkel J. K. Cell-mediated immunity against Besnoitia and toxoplasma in specifically and cross-immunized hamsters and in cultures. J Exp Med. 1974 Mar 1;139(3):560–580. doi: 10.1084/jem.139.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holland R. I. Cytotoxicity of fluoride. Acta Odontol Scand. 1980;38(2):69–79. doi: 10.3109/00016358009003481. [DOI] [PubMed] [Google Scholar]
  13. Jackett P. S., Andrew P. W., Aber V. R., Lowrie D. B. Guinea pig alveolar macrophages probably kill M. tuberculosis H37Rv and H37Ra in vivo by producing hydrogen peroxide. Adv Exp Med Biol. 1983;162:99–104. doi: 10.1007/978-1-4684-4481-0_10. [DOI] [PubMed] [Google Scholar]
  14. Jacobs R. F., Locksley R. M., Wilson C. B., Haas J. E., Klebanoff S. J. Interaction of primate alveolar macrophages and Legionella pneumophila. J Clin Invest. 1984 Jun;73(6):1515–1523. doi: 10.1172/JCI111357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones T. C., Hirsch J. G. The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J Exp Med. 1972 Nov 1;136(5):1173–1194. doi: 10.1084/jem.136.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones T. C., Len L., Hirsch J. G. Assessment in vitro of immunity against Toxoplasma gondii. J Exp Med. 1975 Feb 1;141(2):466–482. doi: 10.1084/jem.141.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LAINSON R. Toxoplasmosis in England. II. Variation factors in the pathogenesis of Toxoplasma infections: the sudden increase in virulence of a strain after passage in multimammate rats and canaries. Ann Trop Med Parasitol. 1955 Dec;49(4):397–416. [PubMed] [Google Scholar]
  18. Lehrer R. I., Ferrari L. G., Patterson-Delafield J., Sorrell T. Fungicidal activity of rabbit alveolar and peritoneal macrophages against Candida albicans. Infect Immun. 1980 Jun;28(3):1001–1008. doi: 10.1128/iai.28.3.1001-1008.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lehrer R. I., Selsted M. E., Szklarek D., Fleischmann J. Antibacterial activity of microbicidal cationic proteins 1 and 2, natural peptide antibiotics of rabbit lung macrophages. Infect Immun. 1983 Oct;42(1):10–14. doi: 10.1128/iai.42.1.10-14.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Masur H., Jones T. C. The interaction in vitro of Pneumocystis carinii with macrophages and L-cells. J Exp Med. 1978 Jan 1;147(1):157–170. doi: 10.1084/jem.147.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mazur M. T., Williamson J. R. Macrophage deformability and phagocytosis. J Cell Biol. 1977 Oct;75(1):185–199. doi: 10.1083/jcb.75.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McLeod R., Estes R., Mack D. G., McLeod E. G. Effects of human alveolar macrophages and peripheral blood monocytes on Toxoplasma gondii. J Infect Dis. 1983 May;147(5):957–957. doi: 10.1093/infdis/147.5.957. [DOI] [PubMed] [Google Scholar]
  23. McLeod R., Remington J. S. Inhibition or killing of an intracellular pathogen by activated macrophages is abrogated by TLCK or aminophylline. Immunology. 1980 Apr;39(4):599–605. [PMC free article] [PubMed] [Google Scholar]
  24. Murray H. W., Byrne G. I., Rothermel C. D., Cartelli D. M. Lymphokine enhances oxygen-independent activity against intracellular pathogens. J Exp Med. 1983 Jul 1;158(1):234–239. doi: 10.1084/jem.158.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murray H. W., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates. J Exp Med. 1979 Oct 1;150(4):938–949. doi: 10.1084/jem.150.4.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murray H. W., Gellene R. A., Libby D. M., Rothermel C. D., Rubin B. Y. Activation of tissue macrophages from AIDS patients: in vitro response of AIDS alveolar macrophages to lymphokines and interferon-gamma. J Immunol. 1985 Oct;135(4):2374–2377. [PubMed] [Google Scholar]
  27. Murray H. W., Juangbhanich C. W., Nathan C. F., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates. J Exp Med. 1979 Oct 1;150(4):950–964. doi: 10.1084/jem.150.4.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murray H. W. Pretreatment with phorbol myristate acetate inhibits macrophage activity against intracellular protozoa. J Reticuloendothel Soc. 1982 Jun;31(6):479–487. [PubMed] [Google Scholar]
  29. Murray H. W., Rubin B. Y., Carriero S. M., Harris A. M., Jaffee E. A. Human mononuclear phagocyte antiprotozoal mechanisms: oxygen-dependent vs oxygen-independent activity against intracellular Toxoplasma gondii. J Immunol. 1985 Mar;134(3):1982–1988. [PubMed] [Google Scholar]
  30. Murray H. W., Rubin B. Y., Masur H., Roberts R. B. Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome. N Engl J Med. 1984 Apr 5;310(14):883–889. doi: 10.1056/NEJM198404053101404. [DOI] [PubMed] [Google Scholar]
  31. Murray H. W., Rubin B. Y., Masur H., Roberts R. B. Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome. N Engl J Med. 1984 Apr 5;310(14):883–889. doi: 10.1056/NEJM198404053101404. [DOI] [PubMed] [Google Scholar]
  32. Murray J. F., Felton C. P., Garay S. M., Gottlieb M. S., Hopewell P. C., Stover D. E., Teirstein A. S. Pulmonary complications of the acquired immunodeficiency syndrome. Report of a National Heart, Lung, and Blood Institute workshop. N Engl J Med. 1984 Jun 21;310(25):1682–1688. doi: 10.1056/NEJM198406213102529. [DOI] [PubMed] [Google Scholar]
  33. Nathan C. F. Mechanisms of macrophage antimicrobial activity. Trans R Soc Trop Med Hyg. 1983;77(5):620–630. doi: 10.1016/0035-9203(83)90190-6. [DOI] [PubMed] [Google Scholar]
  34. Pick E., Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226. doi: 10.1016/0022-1759(81)90138-1. [DOI] [PubMed] [Google Scholar]
  35. Poole B., Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981 Sep;90(3):665–669. doi: 10.1083/jcb.90.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. REMINGTON J. S., JACOBS L., KAUFMAN H. E. Studies on chronic toxoplasmosis; the relation of infective dose to residual infection and to the possibility of congenital transmission. Am J Ophthalmol. 1958 Nov;46(5 Pt 2):261–268. [PubMed] [Google Scholar]
  37. Remington J. S. Toxoplasmosis in the adult. Bull N Y Acad Med. 1974 Feb;50(2):211–227. [PMC free article] [PubMed] [Google Scholar]
  38. Ryning F. W., Remington J. S. Effect of alveolar macrophages on Toxoplasma gondii. Infect Immun. 1977 Dec;18(3):746–753. doi: 10.1128/iai.18.3.746-753.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schaffner A., Douglas H., Braude A. I., Davis C. E. Killing of Aspergillus spores depends on the anatomical source of the macrophage. Infect Immun. 1983 Dec;42(3):1109–1115. doi: 10.1128/iai.42.3.1109-1115.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schaffner A., Douglas H., Braude A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to Aspergillus. Observations on these two lines of defense in vivo and in vitro with human and mouse phagocytes. J Clin Invest. 1982 Mar;69(3):617–631. doi: 10.1172/JCI110489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Scott P., James S., Sher A. The respiratory burst is not required for killing of intracellular and extracellular parasites by a lymphokine-activated macrophage cell line. Eur J Immunol. 1985 Jun;15(6):553–558. doi: 10.1002/eji.1830150605. [DOI] [PubMed] [Google Scholar]
  42. Sethi K. K., Pelster B., Suzuki N., Piekarski G., Brandis H. Immunity to Toxoplasma gondii induced in vitro in non-immune mouse macrophages with specifically immune lymphocytes. J Immunol. 1975 Oct;115(4):1151–1158. [PubMed] [Google Scholar]
  43. Sibley L. D., Krahenbuhl J. L., Weidner E. Lymphokine activation of J774G8 cells and mouse peritoneal macrophages challenged with Toxoplasma gondii. Infect Immun. 1985 Sep;49(3):760–764. doi: 10.1128/iai.49.3.760-764.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sibley L. D., Weidner E., Krahenbuhl J. L. Phagosome acidification blocked by intracellular Toxoplasma gondii. 1985 May 30-Jun 5Nature. 315(6018):416–419. doi: 10.1038/315416a0. [DOI] [PubMed] [Google Scholar]
  45. Suthanthiran M., Solomon S. D., Williams P. S., Rubin A. L., Novogrodsky A., Stenzel K. H. Hydroxyl radical scavengers inhibit human natural killer cell activity. Nature. 1984 Jan 19;307(5948):276–278. doi: 10.1038/307276a0. [DOI] [PubMed] [Google Scholar]
  46. Tolentino P. La compartecipazione polmonare nella toxoplasmosi umana ed animale ed il suo significato clinico ed epidemiologico. G Mal Infett Parassit. 1965 Oct;17(10):638–642. [PubMed] [Google Scholar]
  47. Tourani J. M., Israël-Biet D., Venet A., Andrieu J. M. Unusual pulmonary infection in a puzzling presentation of AIDS. Lancet. 1985 Apr 27;1(8435):989–989. doi: 10.1016/s0140-6736(85)91769-6. [DOI] [PubMed] [Google Scholar]
  48. Vietzke W. M., Gelderman A. H., Grimley P. M., Valsamis M. P. Toxoplasmosis complicating malignancy. Experience at the National Cancer Institute. Cancer. 1968 May;21(5):816–827. doi: 10.1002/1097-0142(196805)21:5<816::aid-cncr2820210506>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  49. Wilson C. B., Tsai V., Remington J. S. Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J Exp Med. 1980 Feb 1;151(2):328–346. doi: 10.1084/jem.151.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wilson W. R., Cockerill F. R., 3rd, Rosenow E. C., 3rd Pulmonary disease in the immunocompromised host (2). Mayo Clin Proc. 1985 Sep;60(9):610–631. doi: 10.1016/s0025-6196(12)60985-9. [DOI] [PubMed] [Google Scholar]
  51. Winston D. J., Territo M. C., Ho W. G., Miller M. J., Gale R. P., Golde D. W. Alveolar macrophage dysfunction in human bone marrow transplant recipients. Am J Med. 1982 Dec;73(6):859–866. doi: 10.1016/0002-9343(82)90777-x. [DOI] [PubMed] [Google Scholar]
  52. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES