Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jul 1;172(1):13–18. doi: 10.1084/jem.172.1.13

Pentraxin-chromatin interactions: serum amyloid P component specifically displaces H1-type histones and solubilizes native long chromatin

PMCID: PMC2188144  PMID: 2358775

Abstract

Pure serum amyloid P component (SAP) and native long chromatin, mixed together at wt/wt ratios between 1:1 and 1:2 in the presence of physiological concentrations of NaCl and calcium, both remained in solution, whereas each alone precipitates rapidly under these conditions. This solubilization accompanies the binding of SAP to chromatin and the displacement of H1-type histones, which are essential for condensation and higher order folding of chromatin. Such binding of SAP to chromatin is remarkable since displacement of H1 and H5 by salt alone requires approximately 0.5 M NaCl. SAP also bound to nucleosome core particles forming soluble complexes with an apparent stoichiometry of 1:2, a result that is compatible with attachment of SAP at the nucleosome dyad, the site of H1 in intact chromatin. SAP thus undergoes a specific, avid interaction with chromatin that promotes its solubilization and may thereby contribute to the physiological handling of chromatin released from cells in vivo. In contrast, C-reactive protein (CRP) did not bind significantly to either chromatin or to core particles at physiological ionic strength. Incubation of chromatin with either normal serum, or acute phase human serum containing raised levels of CRP, did not induce complement activation regardless of the presence of added SAP or CRP, nor was any cleavage of DNA observed.

Full Text

The Full Text of this article is available as a PDF (635.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltz M. L., De Beer F. C., Feinstein A., Pepys M. B. Calcium-dependent aggregation of human serum amyloid P component. Biochim Biophys Acta. 1982 Feb 18;701(2):229–236. doi: 10.1016/0167-4838(82)90118-2. [DOI] [PubMed] [Google Scholar]
  2. Bates D. L., Butler P. J., Pearson E. C., Thomas J. O. Stability of the higher-order structure of chicken-erythrocyte chromatin in solution. Eur J Biochem. 1981 Oct;119(3):469–476. doi: 10.1111/j.1432-1033.1981.tb05631.x. [DOI] [PubMed] [Google Scholar]
  3. Breathnach S. M., Kofler H., Sepp N., Ashworth J., Woodrow D., Pepys M. B., Hintner H. Serum amyloid P component binds to cell nuclei in vitro and to in vivo deposits of extracellular chromatin in systemic lupus erythematosus. J Exp Med. 1989 Oct 1;170(4):1433–1438. doi: 10.1084/jem.170.4.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butler P. J. The folding of chromatin. CRC Crit Rev Biochem. 1983;15(1):57–91. doi: 10.3109/10409238309102801. [DOI] [PubMed] [Google Scholar]
  5. De Beer F. C., Pepys M. B. Isolation of human C-reactive protein and serum amyloid P component. J Immunol Methods. 1982;50(1):17–31. doi: 10.1016/0022-1759(82)90300-3. [DOI] [PubMed] [Google Scholar]
  6. Du Clos T. W. C-reactive protein reacts with the U1 small nuclear ribonucleoprotein. J Immunol. 1989 Oct 15;143(8):2553–2559. [PubMed] [Google Scholar]
  7. Du Clos T. W., Zlock L. T., Rubin R. L. Analysis of the binding of C-reactive protein to histones and chromatin. J Immunol. 1988 Dec 15;141(12):4266–4270. [PubMed] [Google Scholar]
  8. Gotschlich E. C., Liu T. Y. Structural and immunological studies on the pneumococcal C polysaccharide. J Biol Chem. 1967 Feb 10;242(3):463–470. [PubMed] [Google Scholar]
  9. LAURELL C. B. ANTIGEN-ANTIBODY CROSSED ELECTROPHORESIS. Anal Biochem. 1965 Feb;10:358–361. doi: 10.1016/0003-2697(65)90278-2. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lutter L. C. Kinetic analysis of deoxyribonuclease I cleavages in the nucleosome core: evidence for a DNA superhelix. J Mol Biol. 1978 Sep 15;124(2):391–420. doi: 10.1016/0022-2836(78)90306-6. [DOI] [PubMed] [Google Scholar]
  12. Pepys M. B., Baltz M. L. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol. 1983;34:141–212. doi: 10.1016/s0065-2776(08)60379-x. [DOI] [PubMed] [Google Scholar]
  13. Pepys M. B., Butler P. J. Serum amyloid P component is the major calcium-dependent specific DNA binding protein of the serum. Biochem Biophys Res Commun. 1987 Oct 14;148(1):308–313. doi: 10.1016/0006-291x(87)91111-9. [DOI] [PubMed] [Google Scholar]
  14. Pepys M. B., Dash A. C., Markham R. E., Thomas H. C., Williams B. D., Petrie A. Comparative clinical study of protein SAP (amyloid P component) and C-reactive protein in serum. Clin Exp Immunol. 1978 Apr;32(1):119–124. [PMC free article] [PubMed] [Google Scholar]
  15. Pepys M. B., Tompkins C., Smith A. D. An improved method for the isolation from Naja naja venom of cobra factor (CoF) free of phospholipase A. J Immunol Methods. 1979;30(2):105–117. doi: 10.1016/0022-1759(79)90085-1. [DOI] [PubMed] [Google Scholar]
  16. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  17. Robey F. A., Jones K. D., Steinberg A. D. C-reactive protein mediates the solubilization of nuclear DNA by complement in vitro. J Exp Med. 1985 Jun 1;161(6):1344–1356. doi: 10.1084/jem.161.6.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robey F. A., Jones K. D., Tanaka T., Liu T. Y. Binding of C-reactive protein to chromatin and nucleosome core particles. A possible physiological role of C-reactive protein. J Biol Chem. 1984 Jun 10;259(11):7311–7316. [PubMed] [Google Scholar]
  19. Robey F. A., Liu T. Y. Limulin: a C-reactive protein from Limulus polyphemus. J Biol Chem. 1981 Jan 25;256(2):969–975. [PubMed] [Google Scholar]
  20. Sulston J., Mallett F., Durbin R., Horsnell T. Image analysis of restriction enzyme fingerprint autoradiograms. Comput Appl Biosci. 1989 Apr;5(2):101–106. doi: 10.1093/bioinformatics/5.2.101. [DOI] [PubMed] [Google Scholar]
  21. Turnell W. G., Satchwell S. C., Travers A. A. A decapeptide motif for binding to the minor groove of DNA. A proposal. FEBS Lett. 1988 May 23;232(2):263–268. doi: 10.1016/0014-5793(88)80750-6. [DOI] [PubMed] [Google Scholar]
  22. Widom J. Physicochemical studies of the folding of the 100 A nucleosome filament into the 300 A filament. Cation dependence. J Mol Biol. 1986 Aug 5;190(3):411–424. doi: 10.1016/0022-2836(86)90012-4. [DOI] [PubMed] [Google Scholar]
  23. Wood S. P., Oliva G., O'Hara B. P., White H. E., Blundell T. L., Perkins S. J., Sardharwalla I., Pepys M. B. A pentameric form of human serum amyloid P component. Crystallization, X-ray diffraction and neutron scattering studies. J Mol Biol. 1988 Jul 5;202(1):169–173. doi: 10.1016/0022-2836(88)90529-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES