Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jul 1;172(1):183–194. doi: 10.1084/jem.172.1.183

The action of leucyl-leucine methyl ester on cytotoxic lymphocytes requires uptake by a novel dipeptide-specific facilitated transport system and dipeptidyl peptidase I-mediated conversion to membranolytic products

PMCID: PMC2188150  PMID: 1972727

Abstract

The mechanism of toxicity for cytolytic lymphocytes of Leu-Leu-OMe and related dipeptide derivatives was examined. Selective inhibition of dipeptidyl peptidase I (DPPI), a lysosomal thiol protease highly enriched in cytotoxic lymphocytes, prevented all natural killer (NK) toxic effects of such agents. However, many DPPI substrates were found to possess no NK toxic properties. For some such agents, this lack of NK toxicity appeared to be related to the lack of uptake by lymphocytes. In this regard, Leu-Leu-OMe was found to be incorporated by lymphocytes and monocytes via a saturable facilitated transport mechanism with characteristics distinct from previously characterized mammalian dipeptide transport processes. This novel transport process was found to be specific for dipeptides composed of selective L- stereoisomer amino acids and enhanced by hydrophobic ester or amide additions to the COOH terminus of dipeptides. Maximal rates of Leu-Leu- OMe uptake by T8 and NK cell-enriched peripheral blood lymphocytes (PBL) were four- to sixfold higher than for T4-enriched PBL or PBL depleted of Leu-Leu-OMe-sensitive cytotoxic lymphocytes. All dipeptide amides or esters with NK toxic properties were found to act as competitive inhibitors of [3H]Leu-Leu-OMe uptake by PBL. However, some NK nontoxic DPPI substrates were found to be comparable with Leu-Leu- OMe in avidity for this transport process. Such agents were noted to possess one or more hydrophilic amino acid side chains and were found not to mediate red blood cell lysis when subjected to the acyl transferase activity of DPPI. Thus, uptake by a dipeptide-specific facilitated transport mechanism and conversion by DPPI to hydrophobic polymerization products with membranolytic properties were found to be common features of NK toxic dipeptide derivatives. The presence of a previously unreported dipeptide transport mechanism within blood leukocytes and the selective enrichment of the granule enzyme, DPPI, within cytotoxic effector cells of lymphoid or myeloid lineage appear to afford a unique mechanism for the targeting of immunotherapeutic reagents composed of simple dipeptide esters or amides.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  2. Calonge M. L., Ilundain A., Bolufer J. Ionic dependence of glycylsarcosine uptake by isolated chicken enterocytes. J Cell Physiol. 1989 Mar;138(3):579–585. doi: 10.1002/jcp.1041380319. [DOI] [PubMed] [Google Scholar]
  3. Ganapathy V., Mendicino J. F., Leibach F. H. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem. 1981 Jan 10;256(1):118–124. [PubMed] [Google Scholar]
  4. Gelman B. B., Papa L., Davis M. H., Gruenstein E. Decreased lysosomal dipeptidyl aminopeptidase I activity in cultured human skin fibroblasts in Duchenne's muscular dystrophy. J Clin Invest. 1980 Jun;65(6):1398–1406. doi: 10.1172/JCI109804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gershenfeld H. K., Weissman I. L. Cloning of a cDNA for a T cell-specific serine protease from a cytotoxic T lymphocyte. Science. 1986 May 16;232(4752):854–858. doi: 10.1126/science.2422755. [DOI] [PubMed] [Google Scholar]
  6. Green G. D., Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J Biol Chem. 1981 Feb 25;256(4):1923–1928. [PubMed] [Google Scholar]
  7. Hoshi T. Proton-coupled transport of organic solutes in animal cell membranes and its relation to Na+ transport. Jpn J Physiol. 1985;35(2):179–191. doi: 10.2170/jjphysiol.35.179. [DOI] [PubMed] [Google Scholar]
  8. Hu M., Amidon G. L. Passive and carrier-mediated intestinal absorption components of captopril. J Pharm Sci. 1988 Dec;77(12):1007–1011. doi: 10.1002/jps.2600771204. [DOI] [PubMed] [Google Scholar]
  9. Huang F. L., Tappel A. L. Properties of cathepsin C from rat liver. Biochim Biophys Acta. 1972 May 12;268(2):527–538. doi: 10.1016/0005-2744(72)90349-x. [DOI] [PubMed] [Google Scholar]
  10. IZUMIYA N., FRUTON J. S. Specificity of cathepsin C. J Biol Chem. 1956 Jan;218(1):59–76. [PubMed] [Google Scholar]
  11. Lanier L. L., Phillips J. H., Hackett J., Jr, Tutt M., Kumar V. Natural killer cells: definition of a cell type rather than a function. J Immunol. 1986 Nov 1;137(9):2735–2739. [PubMed] [Google Scholar]
  12. Lobe C. G., Finlay B. B., Paranchych W., Paetkau V. H., Bleackley R. C. Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. Science. 1986 May 16;232(4752):858–861. doi: 10.1126/science.3518058. [DOI] [PubMed] [Google Scholar]
  13. Masson D., Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell. 1987 Jun 5;49(5):679–685. doi: 10.1016/0092-8674(87)90544-7. [DOI] [PubMed] [Google Scholar]
  14. Miyamoto Y., Ganapathy V., Leibach F. H. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles. Biochem Biophys Res Commun. 1985 Nov 15;132(3):946–953. doi: 10.1016/0006-291x(85)91899-6. [DOI] [PubMed] [Google Scholar]
  15. Pasternack M. S., Eisen H. N. A novel serine esterase expressed by cytotoxic T lymphocytes. 1985 Apr 25-May 1Nature. 314(6013):743–745. doi: 10.1038/314743a0. [DOI] [PubMed] [Google Scholar]
  16. Podack E. R., Konigsberg P. J. Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J Exp Med. 1984 Sep 1;160(3):695–710. doi: 10.1084/jem.160.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Podack E. R., Young J. D., Cohn Z. A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8629–8633. doi: 10.1073/pnas.82.24.8629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schulz M., Hamprecht B., Kleinkauf H., Bauer K. Peptide uptake by astroglia-rich brain cultures. J Neurochem. 1987 Sep;49(3):748–755. doi: 10.1111/j.1471-4159.1987.tb00957.x. [DOI] [PubMed] [Google Scholar]
  19. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  20. Thiele D. L., Charley M. R., Calomeni J. A., Lipsky P. E. Lethal graft-vs-host disease across major histocompatibility barriers: requirement for leucyl-leucine methyl ester sensitive cytotoxic T cells. J Immunol. 1987 Jan 1;138(1):51–57. [PubMed] [Google Scholar]
  21. Thiele D. L., Lipsky P. E. Leu-Leu-OMe sensitivity of human activated killer cells: delineation of a distinct class of cytotoxic T lymphocytes capable of lysing tumor targets. J Immunol. 1986 Aug 15;137(4):1399–1406. [PubMed] [Google Scholar]
  22. Thiele D. L., Lipsky P. E. Mechanism of L-leucyl-L-leucine methyl ester-mediated killing of cytotoxic lymphocytes: dependence on a lysosomal thiol protease, dipeptidyl peptidase I, that is enriched in these cells. Proc Natl Acad Sci U S A. 1990 Jan;87(1):83–87. doi: 10.1073/pnas.87.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thiele D. L., Lipsky P. E. Modulation of human natural killer cell function by L-leucine methyl ester: monocyte-dependent depletion from human peripheral blood mononuclear cells. J Immunol. 1985 Feb;134(2):786–793. [PubMed] [Google Scholar]
  24. Thiele D. L., Lipsky P. E. Regulation of cellular function by products of lysosomal enzyme activity: elimination of human natural killer cells by a dipeptide methyl ester generated from L-leucine methyl ester by monocytes or polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2468–2472. doi: 10.1073/pnas.82.8.2468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thiele D. L., Lipsky P. E. The immunosuppressive activity of L-leucyl-L-leucine methyl ester: selective ablation of cytotoxic lymphocytes and monocytes. J Immunol. 1986 Feb 1;136(3):1038–1048. [PubMed] [Google Scholar]
  26. Young J. D., Leong L. G., Liu C. C., Damiano A., Wall D. A., Cohn Z. A. Isolation and characterization of a serine esterase from cytolytic T cell granules. Cell. 1986 Oct 24;47(2):183–194. doi: 10.1016/0092-8674(86)90441-1. [DOI] [PubMed] [Google Scholar]
  27. Young J. D., Peterson C. G., Venge P., Cohn Z. A. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature. 1986 Jun 5;321(6070):613–616. doi: 10.1038/321613a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES