Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jul 1;172(1):351–355. doi: 10.1084/jem.172.1.351

Involvement of the PPPGHR motif in T cell activation via CD2

PMCID: PMC2188155  PMID: 1972730

Abstract

Prior studies identified a segment of the CD2 cytoplasmic domain between amino acid (aa) residues 253 and 287 as important in T lymphocyte signal transduction. This region contains two repeats of the sequence motif PPPGHR, thought to form a "cage" structure involved in CD2-mediated signaling. To evaluate this segment, a series of mutant human CD2 molecules were produced by oligonucleotide-directed mutagenesis and inserted into the ovalbumin-specific, I-Ad-restricted murine T-T hybridoma 3DO54.8 using the DOL retroviral system. CD2 M1 (271-272), CD2 M2 (278-279), and CD2 M4 (264-265) mutants replaced the positively charged adjacent aa histidine and arginine (HR) in the wild- type CD2 sequence with aspartic and glutamic acid (DE) at positions 271- 272, 278-279, and 264-265, respectively. In addition, a truncation mutant, CD2 M3 (268), containing only 57 of the 117 cytoplasmic aa and terminating before the second PPPGHR sequence, was generated. Stimulation of transfectants CD2 FL, CD2 M1 (271-272), and CD2 M2 (278- 279) with anti-T11(2) + anti-T11(3) antibodies resulted in a rise in cytosolic-free calcium [( Ca2+]i) and subsequent interleukin 2 (IL-2) secretion. In contrast, CD2 M4 (264-265) transfectants could not be activated in either assay. Thus, alteration of histidine 264 and/or arginine 265 within the first PPPGHR motif affects the process of signal transduction via CD2, whereas identical mutations in residues at 271-272 or 278-279 were individually without effect. Consistent with these data, CD2 M3 (268) transfectants were able to generate a detectable amount of IL-2 via CD2 triggering. These data support the notion that the PPPGHR motif at aa 260-265 is important for activation of T lymphocytes via the CD2 molecule.

Full Text

The Full Text of this article is available as a PDF (465.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcover A., Weiss M. J., Daley J. F., Reinherz E. L. The T11 glycoprotein is functionally linked to a calcium channel in precursor and mature T-lineage cells. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2614–2618. doi: 10.1073/pnas.83.8.2614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bierer B. E., Peterson A., Gorga J. C., Herrmann S. H., Burakoff S. J. Synergistic T cell activation via the physiological ligands for CD2 and the T cell receptor. J Exp Med. 1988 Sep 1;168(3):1145–1156. doi: 10.1084/jem.168.3.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brottier P., Boumsell L., Gelin C., Bernard A. T cell activation via CD2 [T, gp50] molecules: accessory cells are required to trigger T cell activation via CD2-D66 plus CD2-9.6/T11(1) epitopes. J Immunol. 1985 Sep;135(3):1624–1631. [PubMed] [Google Scholar]
  4. He Q., Beyers A. D., Barclay A. N., Williams A. F. A role in transmembrane signaling for the cytoplasmic domain of the CD2 T lymphocyte surface antigen. Cell. 1988 Sep 23;54(7):979–984. doi: 10.1016/0092-8674(88)90112-2. [DOI] [PubMed] [Google Scholar]
  5. Hünig T., Tiefenthaler G., Meyer zum Büschenfelde K. H., Meuer S. C. Alternative pathway activation of T cells by binding of CD2 to its cell-surface ligand. Nature. 1987 Mar 19;326(6110):298–301. doi: 10.1038/326298a0. [DOI] [PubMed] [Google Scholar]
  6. Kawasaki E. S., Clark S. S., Coyne M. Y., Smith S. D., Champlin R., Witte O. N., McCormick F. P. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5698–5702. doi: 10.1073/pnas.85.15.5698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  8. Moingeon P., Alcover A., Clayton L. K., Chang H. C., Transy C., Reinherz E. L. Expression of a functional CD3-Ti antigen/MHC receptor in the absence of surface CD2. Analysis with clonal Jurkat cell mutants. J Exp Med. 1988 Dec 1;168(6):2077–2090. doi: 10.1084/jem.168.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moingeon P., Chang H. C., Sayre P. H., Clayton L. K., Alcover A., Gardner P., Reinherz E. L. The structural biology of CD2. Immunol Rev. 1989 Oct;111:111–144. doi: 10.1111/j.1600-065x.1989.tb00544.x. [DOI] [PubMed] [Google Scholar]
  10. Sayre P. H., Chang H. C., Hussey R. E., Brown N. R., Richardson N. E., Spagnoli G., Clayton L. K., Reinherz E. L. Molecular cloning and expression of T11 cDNAs reveal a receptor-like structure on human T lymphocytes. Proc Natl Acad Sci U S A. 1987 May;84(9):2941–2945. doi: 10.1073/pnas.84.9.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Selvaraj P., Plunkett M. L., Dustin M., Sanders M. E., Shaw S., Springer T. A. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. 1987 Mar 26-Apr 1Nature. 326(6111):400–403. doi: 10.1038/326400a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES