Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jul 1;172(1):325–334. doi: 10.1084/jem.172.1.325

Differentiation of normal human pre-B cells in vitro

PMCID: PMC2188157  PMID: 2141629

Abstract

The differentiation of surface Ig- pre-B cells into surface Ig+ B cells is a critical transition in mammalian B cell ontogeny. Elucidation of the growth factor requirements and differentiative potential of human pre-B cells has been hampered by the absence of a reproducible culture system that supports differentiation. Fluorescence-activated cell sorting and magnetic bead depletion were used to purify fetal bone marrow CD10+/surface mu- cells, which contain 60-70% cytoplasmic mu+ pre-B cells. CD10+/surface mu- cells cultured for 2 d were observed to differentiate into surface mu+ cells. Analysis by Southern blotting provided direct evidence that rearrangement of kappa light chain genes occurs in culture, and flow cytometric analysis revealed the appearance of surface Ig+ B cells expressing mu/kappa or mu/lambda. Unexpectedly, the kappa/lambda ratio in differentiated cells was the inverse of what is normally observed in adult peripheral blood. Differentiation occurs in the absence of exogenous growth factors or cytokines, suggesting that a stimulus-independent differentiative inertia might characterize pre-B cells in vivo. Future use of this model will facilitate our understanding of normal and abnormal human pre-B cell differentiation.

Full Text

The Full Text of this article is available as a PDF (1,016.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson C. S., Kersey J. H., LeBien T. W. A monoclonal antibody (BA-1) reactive with cells of human B lymphocyte lineage. J Immunol. 1981 Jan;126(1):83–88. [PubMed] [Google Scholar]
  2. Bofill M., Janossy G., Janossa M., Burford G. D., Seymour G. J., Wernet P., Kelemen E. Human B cell development. II. Subpopulations in the human fetus. J Immunol. 1985 Mar;134(3):1531–1538. [PubMed] [Google Scholar]
  3. Campana D., Janossy G. Proliferation of normal and malignant human immature lymphoid cells. Blood. 1988 May;71(5):1201–1210. [PubMed] [Google Scholar]
  4. Coleclough C., Perry R. P., Karjalainen K., Weigert M. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature. 1981 Apr 2;290(5805):372–378. doi: 10.1038/290372a0. [DOI] [PubMed] [Google Scholar]
  5. Cossman J., Neckers L. M., Arnold A., Korsmeyer S. J. Induction of differentiation in a case of common acute lymphoblastic leukemia. N Engl J Med. 1982 Nov 11;307(20):1251–1254. doi: 10.1056/NEJM198211113072006. [DOI] [PubMed] [Google Scholar]
  6. Hara J., Benedict S. H., Champagne E., Takihara Y., Mak T. W., Minden M., Gelfand E. W. T cell receptor delta gene rearrangements in acute lymphoblastic leukemia. J Clin Invest. 1988 Dec;82(6):1974–1982. doi: 10.1172/JCI113817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hieter P. A., Korsmeyer S. J., Waldmann T. A., Leder P. Human immunoglobulin kappa light-chain genes are deleted or rearranged in lambda-producing B cells. Nature. 1981 Apr 2;290(5805):368–372. doi: 10.1038/290368a0. [DOI] [PubMed] [Google Scholar]
  8. Hofman F. M., Brock M., Taylor C. R., Lyons B. IL-4 regulates differentiation and proliferation of human precursor B cells. J Immunol. 1988 Aug 15;141(4):1185–1190. [PubMed] [Google Scholar]
  9. Hollander Z., Shah V. O., Civin C. I., Loken M. R. Assessment of proliferation during maturation of the B lymphoid lineage in normal human bone marrow. Blood. 1988 Feb;71(2):528–531. [PubMed] [Google Scholar]
  10. Hollis G. F., Evans R. J., Stafford-Hollis J. M., Korsmeyer S. J., McKearn J. P. Immunoglobulin lambda light-chain-related genes 14.1 and 16.1 are expressed in pre-B cells and may encode the human immunoglobulin omega light-chain protein. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5552–5556. doi: 10.1073/pnas.86.14.5552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kansas G. S., Dailey M. O. Expression of adhesion structures during B cell development in man. J Immunol. 1989 May 1;142(9):3058–3062. [PubMed] [Google Scholar]
  12. Kincade P. W. Experimental models for understanding B lymphocyte formation. Adv Immunol. 1987;41:181–267. doi: 10.1016/s0065-2776(08)60032-2. [DOI] [PubMed] [Google Scholar]
  13. Kincade P. W., Lee G., Paige C. J., Scheid M. P. Cellular interactions affecting the maturation of murine B lymphocyte precursors in vitro. J Immunol. 1981 Jul;127(1):255–260. [PubMed] [Google Scholar]
  14. Kincade P. W., Lee G., Pietrangeli C. E., Hayashi S., Gimble J. M. Cells and molecules that regulate B lymphopoiesis in bone marrow. Annu Rev Immunol. 1989;7:111–143. doi: 10.1146/annurev.iy.07.040189.000551. [DOI] [PubMed] [Google Scholar]
  15. Korsmeyer S. J., Hieter P. A., Sharrow S. O., Goldman C. K., Leder P., Waldmann T. A. Normal human B cells display ordered light chain gene rearrangements and deletions. J Exp Med. 1982 Oct 1;156(4):975–985. doi: 10.1084/jem.156.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Landreth K. S., Engelhard D., Beare M. H., Kincade P. W., Kapoor N., Good R. A. Regulation of human B lymphopoiesis: effect of a urinary activity associated with cyclic neutropenia. J Immunol. 1985 Apr;134(4):2305–2309. [PubMed] [Google Scholar]
  17. LeBien T. W. Growing human B-cell precursors in vitro: the continuing challenge. Immunol Today. 1989 Sep;10(9):296–298. doi: 10.1016/0167-5699(89)90084-4. [DOI] [PubMed] [Google Scholar]
  18. LeBien T. W., McCormack R. T. The common acute lymphoblastic leukemia antigen (CD10)--emancipation from a functional enigma. Blood. 1989 Feb 15;73(3):625–635. [PubMed] [Google Scholar]
  19. Loken M. R., Shah V. O., Dattilio K. L., Civin C. I. Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte development. Blood. 1987 Nov;70(5):1316–1324. [PubMed] [Google Scholar]
  20. Loken M. R., Shah V. O., Dattilio K. L., Civin C. I. Flow cytometric analysis of human bone marrow: I. Normal erythroid development. Blood. 1987 Jan;69(1):255–263. [PubMed] [Google Scholar]
  21. Paolucci P., Rapson N. T., Layward L., Hayward A. R. Growth of pre-B cells in cultures of bone marrow from children with acute lymphoblastic leukaemia and other diseases. Clin Exp Immunol. 1981 Jan;43(1):143–148. [PMC free article] [PubMed] [Google Scholar]
  22. Pearl E. R. Pre-B-cells in normal human bone marrow and in bone marrow from patients with leukemia in remission: persistent quantitative differences and possible expression of cell surface IgM in vitro. Blood. 1983 Mar;61(3):464–468. [PubMed] [Google Scholar]
  23. Pillai S., Baltimore D. Formation of disulphide-linked mu 2 omega 2 tetramers in pre-B cells by the 18K omega-immunoglobulin light chain. Nature. 1987 Sep 10;329(6135):172–174. doi: 10.1038/329172a0. [DOI] [PubMed] [Google Scholar]
  24. Shipp M. A., Vijayaraghavan J., Schmidt E. V., Masteller E. L., D'Adamio L., Hersh L. B., Reinherz E. L. Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 ("enkephalinase"): direct evidence by cDNA transfection analysis. Proc Natl Acad Sci U S A. 1989 Jan;86(1):297–301. doi: 10.1073/pnas.86.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wörmann B., Anderson J. M., Liberty J. A., Gajl-Peczalska K., Brunning R. D., Silberman T. L., Arthur D. C., LeBien T. W. Establishment of a leukemic cell model for studying human pre-B to B cell differentiation. J Immunol. 1989 Jan 1;142(1):110–117. [PubMed] [Google Scholar]
  26. Wörmann B., Gesner T. G., Mufson R. A., LeBien T. W. Proliferative effect of interleukin-3 on normal and leukemic human B cell precursors. Leukemia. 1989 Jun;3(6):399–404. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES