Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jul 1;172(1):35–45. doi: 10.1084/jem.172.1.35

Structure of the gene of tum- transplantation antigen P198: a point mutation generates a new antigenic peptide

PMCID: PMC2188179  PMID: 1694221

Abstract

Mutagen treatment of mouse tumor cell line P815 produces tum- variants that are rejected by syngeneic mice because they express new transplantation antigens. These tum- antigens are recognized by cytotoxic T lymphocytes (CTL) but induce no detectable antibody response. By transfecting P815 cell line P1.HTR with DNA of tum- variant P198, we obtained transfectants expressing tum- antigen P198 that could be identified on the basis of their ability to stimulate anti-P198 CTL. This was repeated with DNA of a cosmid library derived from variant P198, and a cosmid carrying the sequence encoding antigen P198 was recovered from a transfectant. Gene P198 is 3 kb long and contains eight exons. It shows no homology with previously identified tum- gene P91A, nor with any gene presently recorded in the data banks. The long open reading frame codes for a 23.5-kD protein. The antigenic allele of gene P198 differs from the normal allele by a point mutation located in exon 7. This mutation causes an Ala to Thr change, and was shown by site-directed mutagenesis to be responsible for the expression of the antigen. An 11-amino acid synthetic peptide covering the sequence surrounding the tum- mutation rendered P815 cells sensitive to lysis by anti-P198 CTL. The homologous peptide corresponding to the normal sequence of the gene did not, but it was able to compete for binding to major histocompatibility complex molecule Kd. We conclude that tum- mutation P198 generates a new epitope recognized by syngeneic T cells. As observed with gene P91A, we found that a fragment of gene P198 that contained only exons 3-7, cloned in nonexpression vectors, transferred efficiently the expression of the antigen.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basombrío M. A. Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene. Cancer Res. 1970 Oct;30(10):2458–2462. [PubMed] [Google Scholar]
  2. Bates P. F., Swift R. A. Double cos site vectors: simplified cosmid cloning. Gene. 1983 Dec;26(2-3):137–146. doi: 10.1016/0378-1119(83)90183-x. [DOI] [PubMed] [Google Scholar]
  3. Bernard H. U., Krämmer G., Röwekamp W. G. Construction of a fusion gene that confers resistance against hygromycin B to mammalian cells in culture. Exp Cell Res. 1985 May;158(1):237–243. doi: 10.1016/0014-4827(85)90446-x. [DOI] [PubMed] [Google Scholar]
  4. Boon T. Antigenic tumor cell variants obtained with mutagens. Adv Cancer Res. 1983;39:121–151. doi: 10.1016/s0065-230x(08)61034-9. [DOI] [PubMed] [Google Scholar]
  5. Boon T., Kellermann O. Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma cell line. Proc Natl Acad Sci U S A. 1977 Jan;74(1):272–275. doi: 10.1073/pnas.74.1.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boon T., Szikora J. P., De Plaen E., Wölfel T., Van Pel A. Cloning and characterization of genes coding for tum- transplantation antigens. J Autoimmun. 1989 Jun;2 (Suppl):109–114. doi: 10.1016/0896-8411(89)90122-4. [DOI] [PubMed] [Google Scholar]
  7. Boon T., Van Pel A. T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis. Immunogenetics. 1989;29(2):75–79. doi: 10.1007/BF00395854. [DOI] [PubMed] [Google Scholar]
  8. Boon T., Van Pel A. Teratocarcinoma cell variants rejected by syngeneic mice: protection of mice immunized with these variants against other variants and against the original malignant cell line. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1519–1523. doi: 10.1073/pnas.75.3.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boon T., Van Snick J., Van Pel A., Uyttenhove C., Marchand M. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T lymphocyte-mediated cytolysis. J Exp Med. 1980 Nov 1;152(5):1184–1193. doi: 10.1084/jem.152.5.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Plaen E., Lurquin C., Van Pel A., Mariamé B., Szikora J. P., Wölfel T., Sibille C., Chomez P., Boon T. Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2274–2278. doi: 10.1073/pnas.85.7.2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frost P., Kerbel R. S., Bauer E., Tartamella-Biondo R., Cefalu W. Mutagen treatment as a means for selecting immunogenic variants from otherwise poorly immunogenic malignant murine tumors. Cancer Res. 1983 Jan;43(1):125–132. [PubMed] [Google Scholar]
  13. Grosveld F. G., Lund T., Murray E. J., Mellor A. L., Dahl H. H., Flavell R. A. The construction of cosmid libraries which can be used to transform eukaryotic cells. Nucleic Acids Res. 1982 Nov 11;10(21):6715–6732. doi: 10.1093/nar/10.21.6715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  16. Lurquin C., Van Pel A., Mariamé B., De Plaen E., Szikora J. P., Janssens C., Reddehase M. J., Lejeune J., Boon T. Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell. 1989 Jul 28;58(2):293–303. doi: 10.1016/0092-8674(89)90844-1. [DOI] [PubMed] [Google Scholar]
  17. Margulies D. H., Evans G. A., Ozato K., Camerini-Otero R. D., Tanaka K., Appella E., Seidman J. G. Expression of H-2Dd and H-2Ld mouse major histocompatibility antigen genes in L cells after DNA-mediated gene transfer. J Immunol. 1983 Jan;130(1):463–470. [PubMed] [Google Scholar]
  18. Maryanski J. L., Boon T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. IV. Analysis of variant-specific antigens by selection of antigen-loss variants with cytolytic T cell clones. Eur J Immunol. 1982 May;12(5):406–412. doi: 10.1002/eji.1830120509. [DOI] [PubMed] [Google Scholar]
  19. Maryanski J. L., Marchand M., Uyttenhove C., Boon T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. VI. Occasional escape from host rejection due to antigen-loss secondary variants. Int J Cancer. 1983 Jan 15;31(1):119–123. doi: 10.1002/ijc.2910310119. [DOI] [PubMed] [Google Scholar]
  20. Maryanski J. L., Pala P., Cerottini J. C., Corradin G. Synthetic peptides as antigens and competitors in recognition by H-2-restricted cytolytic T cells specific for HLA. J Exp Med. 1988 Apr 1;167(4):1391–1405. doi: 10.1084/jem.167.4.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maryanski J. L., Szpirer J., Szpirer C., Boon T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. VII. Dominant expression of variant antigens in somatic cell hybrids. Somatic Cell Genet. 1983 May;9(3):345–357. doi: 10.1007/BF01539143. [DOI] [PubMed] [Google Scholar]
  22. Maryanski J. L., Van Snick J., Cerottini J. C., Boon T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. III. Clonal analysis of the syngeneic cytolytic T lymphocyte response. Eur J Immunol. 1982 May;12(5):401–406. doi: 10.1002/eji.1830120508. [DOI] [PubMed] [Google Scholar]
  23. Nakamaye K. L., Eckstein F. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1986 Dec 22;14(24):9679–9698. doi: 10.1093/nar/14.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perucho M., Hanahan D., Wigler M. Genetic and physical linkage of exogenous sequences in transformed cells. Cell. 1980 Nov;22(1 Pt 1):309–317. doi: 10.1016/0092-8674(80)90178-6. [DOI] [PubMed] [Google Scholar]
  25. Srivastava P. K., Kozak C. A., Old L. J. Chromosomal assignment of the gene encoding the mouse tumor rejection antigen gp96. Immunogenetics. 1988;28(3):205–207. doi: 10.1007/BF00375860. [DOI] [PubMed] [Google Scholar]
  26. Szikora J. P., Van Pel A., Brichard V., André M., Van Baren N., Henry P., De Plaen E., Boon T. Structure of the gene of tum- transplantation antigen P35B: presence of a point mutation in the antigenic allele. EMBO J. 1990 Apr;9(4):1041–1050. doi: 10.1002/j.1460-2075.1990.tb08208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Townsend A. R., Bastin J., Gould K., Brownlee G. G. Cytotoxic T lymphocytes recognize influenza haemagglutinin that lacks a signal sequence. Nature. 1986 Dec 11;324(6097):575–577. doi: 10.1038/324575a0. [DOI] [PubMed] [Google Scholar]
  28. Townsend A. R., Gotch F. M., Davey J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell. 1985 Sep;42(2):457–467. doi: 10.1016/0092-8674(85)90103-5. [DOI] [PubMed] [Google Scholar]
  29. Townsend A. R., Rothbard J., Gotch F. M., Bahadur G., Wraith D., McMichael A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986 Mar 28;44(6):959–968. doi: 10.1016/0092-8674(86)90019-x. [DOI] [PubMed] [Google Scholar]
  30. Uyttenhove C., Maryanski J., Boon T. Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J Exp Med. 1983 Mar 1;157(3):1040–1052. doi: 10.1084/jem.157.3.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Uyttenhove C., Van Snick J., Boon T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. I. Rejection by syngeneic mice. J Exp Med. 1980 Nov 1;152(5):1175–1183. doi: 10.1084/jem.152.5.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van Pel A., De Plaen E., Boon T. Selection of highly transfectable variant from mouse mastocytoma P815. Somat Cell Mol Genet. 1985 Sep;11(5):467–475. doi: 10.1007/BF01534840. [DOI] [PubMed] [Google Scholar]
  33. Van Pel A., Georlette M., Boon T. Tumor cell variants obtained by mutagenesis of a Lewis lung carcinoma cell line: immune rejection by syngeneic mice. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5282–5285. doi: 10.1073/pnas.76.10.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Van Snick J., Maryanski J., Van Pel A., Parmiani G., Boon T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. V. H-2 associativity of variant-specific antigens. Eur J Immunol. 1982 Nov;12(11):905–908. doi: 10.1002/eji.1830121102. [DOI] [PubMed] [Google Scholar]
  35. Wölfel T., Van Pel A., De Plaen E., Lurquin C., Maryanski J. L., Boon T. Immunogenic (tum-) variants obtained by mutagenesis of mouse mastocytoma P815. VIII. Detection of stable transfectants expressing a tum- antigen with a cytolytic T cell stimulation assay. Immunogenetics. 1987;26(3):178–187. doi: 10.1007/BF00365909. [DOI] [PubMed] [Google Scholar]
  36. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES