Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Jul 1;164(1):263–279. doi: 10.1084/jem.164.1.263

Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation

PMCID: PMC2188207  PMID: 3088195

Abstract

We have shown that lymphocytes stimulated by PHA produce colony-forming unit of granulocyte/monocyte (CFU-GM)-stimulating and -inhibiting activities, IFN-gamma, and lymphotoxin (LT). IFN-gamma is necessary for inhibition of CFU-GM by PHA-conditioned medium (CM), as shown by experiments in which removal of IFN-gamma from PHA-CM abrogated inhibition. However, experiments in which rIFN-gamma was added to IFN- gamma-depleted PHA-CM revealed the presence, in PHA-CM, of other factors that act in synergy with IFN-gamma to inhibit CFU-GM. Fractionation of PHA-CM on a Sephadex G-100 column was used to separate IFN-gamma and LT. Colony-inhibiting activity was eluted in fractions that contained both IFN-gamma and LT activities, identifying LT as a factor present in PHA-CM that synergizes with IFN-gamma to inhibit CFU- GM. Treatment of PHA-CM with mAb against either IFN-gamma or LT completely abrogated the colony-inhibiting activity, demonstrating a requirement for both lymphokines in PHA-CM-induced inhibition of CFU- GM. Experiments using rIFN-gamma and preparations of purified LT confirmed that neither lymphokine alone, when added to bone marrow cells at the concentrations present in PHA-CM, strongly inhibited day 7 or day 14 CFU-GM, but that the two lymphokines, added together, behaved synergistically to inhibit CFU-GM by up to 70%. The inhibition observed using purified preparations of lymphokines shows that synergy between IFN-gamma and LT is sufficient to explain PHA-CM-induced inhibition of CFU-GM. Our findings suggest that activated T cells regulate hematopoiesis through the release of inhibitory as well as stimulatory factors, and that the simultaneous production of IFN-gamma and LT may represent a mechanism of suppression of hematopoiesis in the cases of bone marrow failure associated with the presence of activated T cells.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdou N. I. Heterogeneity of bone marrow-directed immune mechanisms in the pathogenesis of neutropenia of Felty's syndrome. Arthritis Rheum. 1983 Aug;26(8):947–953. doi: 10.1002/art.1780260802. [DOI] [PubMed] [Google Scholar]
  2. Abdou N. I., NaPombejara C., Balentine L., Abdou N. L. Suppressor cell-mediated neutropenia in Felty's syndrome. J Clin Invest. 1978 Mar;61(3):738–743. doi: 10.1172/JCI108987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abeloff M. D., Waterbury L. Pure red blood cell aplasia and chronic lymphocytic leukemia. Arch Intern Med. 1974 Oct;134(4):721–724. [PubMed] [Google Scholar]
  4. Aderka D., Novick D., Hahn T., Fischer D. G., Wallach D. Increase of vulnerability to lymphotoxin in cells infected by vesicular stomatitis virus and its further augmentation by interferon. Cell Immunol. 1985 May;92(2):218–225. doi: 10.1016/0008-8749(85)90003-6. [DOI] [PubMed] [Google Scholar]
  5. Aggarwal B. B., Henzel W. J., Moffat B., Kohr W. J., Harkins R. N. Primary structure of human lymphotoxin derived from 1788 lymphoblastoid cell line. J Biol Chem. 1985 Feb 25;260(4):2334–2344. [PubMed] [Google Scholar]
  6. Aggarwal B. B., Moffat B., Harkins R. N. Human lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. J Biol Chem. 1984 Jan 10;259(1):686–691. [PubMed] [Google Scholar]
  7. BERLIN N. I., LAWRENCE J. H., LEE H. C. The pathogenesis of the anemia of chronic leukemia; measurement of the life span of the red blood cell with glycine-2-C14. J Lab Clin Med. 1954 Dec;44(6):860–874. [PubMed] [Google Scholar]
  8. Bacigalupo A., Podestà M., Mingari M. C., Moretta L., Van Lint M. T., Marmont A. Immune suppression of hematopoiesis in aplastic anemia: activity of T-gamma lymphocytes. J Immunol. 1980 Oct;125(4):1449–1453. [PubMed] [Google Scholar]
  9. Bagby G. C., Jr, Rigas V. D., Bennett R. M., Vandenbark A. A., Garewal H. S. Interaction of lactoferrin, monocytes, and T lymphocyte subsets in the regulation of steady-state granulopoiesis in vitro. J Clin Invest. 1981 Jul;68(1):56–63. doi: 10.1172/JCI110254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bagby G. C., Jr T lymphocytes involved in inhibition of granulopoiesis in two neutropenic patients are of the cytotoxic/suppressor (T3+T8+) subset. J Clin Invest. 1981 Dec;68(6):1597–1600. doi: 10.1172/JCI110415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Biondi A., Roach J. A., Schlossman S. F., Todd R. F., 3rd Phenotypic characterization of human T lymphocyte populations producing macrophage-activating factor (MAF) lymphokines. J Immunol. 1984 Jul;133(1):281–285. [PubMed] [Google Scholar]
  12. Broxmeyer H. E., Cooper S., Rubin B. Y., Taylor M. W. The synergistic influence of human interferon-gamma and interferon-alpha on suppression of hematopoietic progenitor cells is additive with the enhanced sensitivity of these cells to inhibition by interferons at low oxygen tension in vitro. J Immunol. 1985 Oct;135(4):2502–2506. [PubMed] [Google Scholar]
  13. Broxmeyer H. E., Lu L., Platzer E., Feit C., Juliano L., Rubin B. Y. Comparative analysis of the influences of human gamma, alpha and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte-macrophage (CFU-GM) progenitor cells. J Immunol. 1983 Sep;131(3):1300–1305. [PubMed] [Google Scholar]
  14. Burek V., Plavljanić D., Slamberger S., Vitale B. Studies on the mechanism of allogeneic disease in mice. I. The influence of bone marrow T lymphocytes on the differentiation and proliferation of hemopoietic stem cells. Exp Hematol. 1977 Nov;5(6):465–479. [PubMed] [Google Scholar]
  15. Conta B. S., Powell M. B., Ruddle N. H. Activation of Lyt-1+ and Lyt-2+ T cell cloned lines: stimulation of proliferation, lymphokine production, and self-destruction. J Immunol. 1985 Apr;134(4):2185–2190. [PubMed] [Google Scholar]
  16. Dameshek W., Brown S. M., Rubin A. D. "Pure" red cell anemia (erythroblastic hypoplasia) and thymoma. Semin Hematol. 1967 Jul;4(3):222–232. [PubMed] [Google Scholar]
  17. Degliantoni G., Murphy M., Kobayashi M., Francis M. K., Perussia B., Trinchieri G. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. J Exp Med. 1985 Nov 1;162(5):1512–1530. doi: 10.1084/jem.162.5.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Degliantoni G., Perussia B., Mangoni L., Trinchieri G. Inhibition of bone marrow colony formation by human natural killer cells and by natural killer cell-derived colony-inhibiting activity. J Exp Med. 1985 May 1;161(5):1152–1168. doi: 10.1084/jem.161.5.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. DiPersio J. F., Brennan J. K., Lichtman M. A., Abboud C. N., Kirkpatrick F. H. The fractionation, characterization, and subcellular localization of colony-stimulating activities released by the human monocyte-like cell line, GCT. Blood. 1980 Oct;56(4):717–727. [PubMed] [Google Scholar]
  20. Farrar W. L., Johnson H. M., Farrar J. J. Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2. J Immunol. 1981 Mar;126(3):1120–1125. [PubMed] [Google Scholar]
  21. Goodman J. W., Burch K. T., Basford N. L. Graft-vs.-Host activity of thymocytes: relationship to the role of thymocytes in hemopoiesis. Blood. 1972 Jun;39(6):850–861. [PubMed] [Google Scholar]
  22. Granger G. A., Yamamoto R. S., Fair D. S., Hiserodt J. C. The human LT system. I. Physical-chemical heterogeneity of LT molecules released by mitogen activated human lymphocytes in vitro. Cell Immunol. 1978 Jul;38(2):388–402. doi: 10.1016/0008-8749(78)90069-2. [DOI] [PubMed] [Google Scholar]
  23. Gray P. W., Aggarwal B. B., Benton C. V., Bringman T. S., Henzel W. J., Jarrett J. A., Leung D. W., Moffat B., Ng P., Svedersky L. P. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature. 1984 Dec 20;312(5996):721–724. doi: 10.1038/312721a0. [DOI] [PubMed] [Google Scholar]
  24. Griffin J. D., Sabbath K. D., Herrmann F., Larcom P., Nichols K., Kornacki M., Levine H., Cannistra S. A. Differential expression of HLA-DR antigens in subsets of human CFU-GM. Blood. 1985 Oct;66(4):788–795. [PubMed] [Google Scholar]
  25. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  26. Hansson M., Beran M., Andersson B., Kiessling R. Inhibition of in vitro granulopoiesis by autologous allogeneic human NK cells. J Immunol. 1982 Jul;129(1):126–132. [PubMed] [Google Scholar]
  27. Harvey A. R., Kaiser J., Clarke B. J. Monocytes direct T lymphocyte stimulation of human peripheral blood granulocyte-macrophage colony formation. Br J Haematol. 1984 Sep;58(1):129–136. doi: 10.1111/j.1365-2141.1984.tb06067.x. [DOI] [PubMed] [Google Scholar]
  28. Hoffman R., Zanjani E. D., Lutton J. D., Zalusky R., Wasserman L. R. Suppression of erythroid-colony formation by lymphocytes from patients with aplastic anemia. N Engl J Med. 1977 Jan 6;296(1):10–13. doi: 10.1056/NEJM197701062960103. [DOI] [PubMed] [Google Scholar]
  29. Inoue S., Ottenbreit M. J. Heterogeneity of human colony-forming cells. Blood. 1978 Feb;51(2):195–206. [PubMed] [Google Scholar]
  30. Kagan W. A., Ascensão J. A., Pahwa R. N., Hansen J. A., Goldstein G., Valera E. B., Incefy G. S., Moore M. A., Good R. A. Aplastic anemia: presence in human bone marrow of cells that suppress myelopoiesis. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2890–2894. doi: 10.1073/pnas.73.8.2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kung P., Goldstein G., Reinherz E. L., Schlossman S. F. Monoclonal antibodies defining distinctive human T cell surface antigens. Science. 1979 Oct 19;206(4416):347–349. doi: 10.1126/science.314668. [DOI] [PubMed] [Google Scholar]
  32. Lee S. H., Aggarwal B. B., Rinderknecht E., Assisi F., Chiu H. The synergistic anti-proliferative effect of gamma-interferon and human lymphotoxin. J Immunol. 1984 Sep;133(3):1083–1086. [PubMed] [Google Scholar]
  33. Linch D. C., Cawley J. C., Worman C. P., Galvin M. C., Roberts B. E., Callard R. E., Beverley P. C. Abnormalities of T-cell subsets in patients with neutropenia and an excess of lymphocytes in the bone marrow. Br J Haematol. 1981 May;48(1):137–145. doi: 10.1111/j.1365-2141.1981.00137.x. [DOI] [PubMed] [Google Scholar]
  34. Mangan K. F., Hartnett M. E., Matis S. A., Winkelstein A., Abo T. Natural killer cells suppress human erythroid stem cell proliferation in vitro. Blood. 1984 Feb;63(2):260–269. [PubMed] [Google Scholar]
  35. Nagasawa T., Abe T., Hanada T. Inhibitory effects of T cells on in vitro granulopoiesis, erythropoiesis, and immunoglobulin production in patients with aplastic anaemia. Scand J Haematol. 1982 May;28(5):389–398. doi: 10.1111/j.1600-0609.1982.tb00544.x. [DOI] [PubMed] [Google Scholar]
  36. Nathan D. G., Chess L., Hillman D. G., Clarke B., Breard J., Merler E., Housman D. E. Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro. J Exp Med. 1978 Feb 1;147(2):324–339. doi: 10.1084/jem.147.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nedwin G. E., Svedersky L. P., Bringman T. S., Palladino M. A., Jr, Goeddel D. V. Effect of interleukin 2, interferon-gamma, and mitogens on the production of tumor necrosis factors alpha and beta. J Immunol. 1985 Oct;135(4):2492–2497. [PubMed] [Google Scholar]
  38. Nicola N. A., Metcalf D., Johnson G. R., Burgess A. W. Separation of functionally distinct human granulocyte-macrophage colony-stimulating factors. Blood. 1979 Sep;54(3):614–627. [PubMed] [Google Scholar]
  39. O'Malley J. A., Nussbaum-Blumenson A., Sheedy D., Grossmayer B. J., Ozer H. Identification of the T cell subset that produces human gamma interferon. J Immunol. 1982 Jun;128(6):2522–2526. [PubMed] [Google Scholar]
  40. Parker J. W., Metcalf D. Production of colony-stimulating factor in mitogen-stimulated lymphocyte cultures. J Immunol. 1974 Feb;112(2):502–510. [PubMed] [Google Scholar]
  41. Pennica D., Nedwin G. E., Hayflick J. S., Seeburg P. H., Derynck R., Palladino M. A., Kohr W. J., Aggarwal B. B., Goeddel D. V. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984 Dec 20;312(5996):724–729. doi: 10.1038/312724a0. [DOI] [PubMed] [Google Scholar]
  42. Perussia B., Starr S., Abraham S., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983 May;130(5):2133–2141. [PubMed] [Google Scholar]
  43. Perussia B., Trinchieri G., Lebman D., Jankiewicz J., Lange B., Rovera G. Monoclonal antibodies that detect differentiation surface antigens on human myelomonocytic cells. Blood. 1982 Feb;59(2):382–392. [PubMed] [Google Scholar]
  44. Pike B. L., Robinson W. A. Human bone marrow colony growth in agar-gel. J Cell Physiol. 1970 Aug;76(1):77–84. doi: 10.1002/jcp.1040760111. [DOI] [PubMed] [Google Scholar]
  45. Podesta M., Frassoni F., van Lint M. T., Piaggio G., Marmont A., Bacigalupo A. Generation of CFUC suppressor T cells in vitro. II. Effect of PHA, PWM, and Con-A on bone marrow and peripheral blood lymphocytes from healthy donors. Exp Hematol. 1982 Mar;10(3):256–262. [PubMed] [Google Scholar]
  46. Raefsky E. L., Platanias L. C., Zoumbos N. C., Young N. S. Studies of interferon as a regulator of hematopoietic cell proliferation. J Immunol. 1985 Oct;135(4):2507–2512. [PubMed] [Google Scholar]
  47. Rigby W. F., Ball E. D., Guyre P. M., Fanger M. W. The effects of recombinant-DNA-derived interferons on the growth of myeloid progenitor cells. Blood. 1985 Apr;65(4):858–861. [PubMed] [Google Scholar]
  48. Ruscetti F. W., Chervenick P. A. Release of colony-stimulating activity from thymus-derived lymphocytes. J Clin Invest. 1975 Mar;55(3):520–527. doi: 10.1172/JCI107958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Russell S. W., Rosenau W., Goldberg M. L., Kunitomi G. Purification of human lymphotoxin. J Immunol. 1972 Oct;109(4):784–790. [PubMed] [Google Scholar]
  50. Shah R. G., Caporale L. H., Moore M. A. Characterization of colony-stimulating activity produced by human monocytes and phytohemagglutinin-stimulated lymphocytes. Blood. 1977 Nov;50(5):811–821. [PubMed] [Google Scholar]
  51. Singer J. W., Doney K. C., Thomas E. D. Coculture studies of 16 untransfused patients with aplastic anemia. Blood. 1979 Jul;54(1):180–185. [PubMed] [Google Scholar]
  52. Stone-Wolff D. S., Yip Y. K., Kelker H. C., Le J., Henriksen-Destefano D., Rubin B. Y., Rinderknecht E., Aggarwal B. B., Vilcek J. Interrelationships of human interferon-gamma with lymphotoxin and monocyte cytotoxin. J Exp Med. 1984 Mar 1;159(3):828–843. doi: 10.1084/jem.159.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sugarman B. J., Aggarwal B. B., Hass P. E., Figari I. S., Palladino M. A., Jr, Shepard H. M. Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science. 1985 Nov 22;230(4728):943–945. doi: 10.1126/science.3933111. [DOI] [PubMed] [Google Scholar]
  54. Trinchieri G., Matsumoto-Kobayashi M., Clark S. C., Seehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984 Oct 1;160(4):1147–1169. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wang A. M., Creasey A. A., Ladner M. B., Lin L. S., Strickler J., Van Arsdell J. N., Yamamoto R., Mark D. F. Molecular cloning of the complementary DNA for human tumor necrosis factor. Science. 1985 Apr 12;228(4696):149–154. doi: 10.1126/science.3856324. [DOI] [PubMed] [Google Scholar]
  56. Williams T. W., Granger G. A. Lymphocyte in vitro cytotoxicity: correlation of derepression with release of lymphotoxin from human lymphocytes. J Immunol. 1969 Aug;103(2):170–178. [PubMed] [Google Scholar]
  57. Zoumbos N. C., Djeu J. Y., Young N. S. Interferon is the suppressor of hematopoiesis generated by stimulated lymphocytes in vitro. J Immunol. 1984 Aug;133(2):769–774. [PubMed] [Google Scholar]
  58. Zoumbos N. C., Gascon P., Djeu J. Y., Young N. S. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sci U S A. 1985 Jan;82(1):188–192. doi: 10.1073/pnas.82.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zoumbos N. C., Gascón P., Djeu J. Y., Trost S. R., Young N. S. Circulating activated suppressor T lymphocytes in aplastic anemia. N Engl J Med. 1985 Jan 31;312(5):257–265. doi: 10.1056/NEJM198501313120501. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES