Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Aug 1;164(2):614–626. doi: 10.1084/jem.164.2.614

A single germline VH gene segment of normal A/J mice encodes autoantibodies characteristic of systemic lupus erythematosus

PMCID: PMC2188235  PMID: 3014041

Abstract

These experiments tested the hypothesis that unmutated germline genes from normal mice can encode autoantibodies. We found that the unmutated VHIdCR gene segment, which encodes a large proportion of antiarsonate antibodies in A/J mice, also encodes antibodies with the ability to bind to DNA and cytoskeletal proteins. After Ars immunization, at a time when the VHIdCR gene segment mutates and antibody affinity for the hapten increases, reactivity with the autoantigens was lost. Six antibodies obtained after immunization with Ars bound both the Ars and DNA. Results of competitive inhibition assays suggested that the same variable region site in the antibodies bound to both Ars and DNA. The properties of the individual germline-encoded antibodies, which include reactivity to both DNA and cytoskeletal proteins, suggest that autoantibodies characteristic of SLE might be a subset of antibodies encoded by unmutated germline V genes.

Full Text

The Full Text of this article is available as a PDF (864.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali R., Dersimonian H., Stollar B. D. Binding of monoclonal anti-native DNA autoantibodies to DNA of varying size and conformation. Mol Immunol. 1985 Dec;22(12):1415–1422. doi: 10.1016/0161-5890(85)90065-3. [DOI] [PubMed] [Google Scholar]
  2. Andrzejewski C., Jr, Rauch J., Lafer E., Stollar B. D., Schwartz R. S. Antigen-binding diversity and idiotypic cross-reactions among hybridoma autoantibodies to DNA. J Immunol. 1981 Jan;126(1):226–231. [PubMed] [Google Scholar]
  3. André-Schwartz J., Datta S. K., Shoenfeld Y., Isenberg D. A., Stollar B. D., Schwartz R. S. Binding of cytoskeletal proteins by monoclonal anti-DNA lupus autoantibodies. Clin Immunol Immunopathol. 1984 May;31(2):261–271. doi: 10.1016/0090-1229(84)90246-0. [DOI] [PubMed] [Google Scholar]
  4. Atkinson P. M., Lampman G. W., Furie B. C., Naparstek Y., Schwartz R. S., Stollar B. D., Furie B. Homology of the NH2-terminal amino acid sequences of the heavy and light chains of human monoclonal lupus autoantibodies containing the dominant 16/6 idiotype. J Clin Invest. 1985 Apr;75(4):1138–1143. doi: 10.1172/JCI111808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ballard D. W., Voss E. W., Jr Base specificity and idiotypy of anti-DNA autoantibodies reactive with synthetic nucleic acids. J Immunol. 1985 Nov;135(5):3372–3380. [PubMed] [Google Scholar]
  6. Carel S., Bron C., Corradin G. T-cell hybridoma specific for a cytochrome c peptide: specific antigen binding and interleukin 2 production. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4832–4836. doi: 10.1073/pnas.80.15.4832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christian C. L., Elkon K. B. Autoantibodies to intracellular proteins. Clinical and biologic significance. Am J Med. 1986 Jan;80(1):53–61. doi: 10.1016/0002-9343(86)90048-3. [DOI] [PubMed] [Google Scholar]
  8. Diamond B., Scharff M. D. Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5841–5844. doi: 10.1073/pnas.81.18.5841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dighiero G., Lymberi P., Holmberg D., Lundquist I., Coutinho A., Avrameas S. High frequency of natural autoantibodies in normal newborn mice. J Immunol. 1985 Feb;134(2):765–771. [PubMed] [Google Scholar]
  10. Gavalchin J., Nicklas J. A., Eastcott J. W., Madaio M. P., Stollar B. D., Schwartz R. S., Datta S. K. Lupus prone (SWR x NZB)F1 mice produce potentially nephritogenic autoantibodies inherited from the normal SWR parent. J Immunol. 1985 Feb;134(2):885–894. [PubMed] [Google Scholar]
  11. Guilbert B., Mahana W., Gilbert M., Mazie J. C., Avrameas S. Presence of natural autoantibodies in hyperimmunized mice. Immunology. 1985 Nov;56(3):401–408. [PMC free article] [PubMed] [Google Scholar]
  12. Hannestad K. GammaM rheumatoid factors reacting with nitrophenyl groups and denatured deoxyribonucleic acid. Ann N Y Acad Sci. 1969 Dec 10;168(1):63–75. doi: 10.1111/j.1749-6632.1969.tb43095.x. [DOI] [PubMed] [Google Scholar]
  13. Hornbeck P. V., Lewis G. K. Idiotype connectance in the immune system. I. Expression of a cross-reactive idiotype on induced anti-p-azophenylarsonate antibodies and on endogenous antibodies not specific for arsonate. J Exp Med. 1983 Apr 1;157(4):1116–1136. doi: 10.1084/jem.157.4.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacob L., Tron F., Bach J. F., Louvard D. A monoclonal anti-DNA antibody also binds to cell-surface protein(s). Proc Natl Acad Sci U S A. 1984 Jun;81(12):3843–3845. doi: 10.1073/pnas.81.12.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaartinen M., Griffiths G. M., Hamlyn P. H., Markham A. F., Karjalainen K., Pelkonen J. L., Mäkelä O., Milstein C. Anti-oxazolone hybridomas and the structure of the oxazolone idiotype. J Immunol. 1983 Feb;130(2):937–945. [PubMed] [Google Scholar]
  16. Kuettner M. G., Wang A. L., Nisonoff A. Quantitative investigations of idiotypic antibodies. VI. Idiotypic specificity as a potential genetic marker for the variable regions of mouse immunoglobulin polypeptide chains. J Exp Med. 1972 Mar 1;135(3):579–595. doi: 10.1084/jem.135.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lafer E. M., Rauch J., Andrzejewski C., Jr, Mudd D., Furie B., Furie B., Schwartz R. S., Stollar B. D. Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J Exp Med. 1981 Apr 1;153(4):897–909. doi: 10.1084/jem.153.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manjula B. N., Potter M., Glaudemans C. P. The interaction of mouse myeloma immunoglobulin S15 with negatively charged polysaccharide antigens. Mol Immunol. 1982 Jul;19(7):913–923. doi: 10.1016/0161-5890(82)90358-3. [DOI] [PubMed] [Google Scholar]
  19. Manser T., Gefter M. L. Isolation of hybridomas expressing a specific heavy chain variable region gene segment by using a screening technique that detects mRNA sequences in whole cell lysates. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2470–2474. doi: 10.1073/pnas.81.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Manser T., Huang S. Y., Gefter M. L. Influence of clonal selection on the expression of immunoglobulin variable region genes. Science. 1984 Dec 14;226(4680):1283–1288. doi: 10.1126/science.6334361. [DOI] [PubMed] [Google Scholar]
  21. Margolies M. N., Juszczak E. C., Near R., Marshak-Rothstein A., Rothstein T. L., Sato V. L., Siekevitz M., Smith J. A., Wysocki L. J., Gefter M. L. Structural correlates of idiotypy in the arsonate system. Ann N Y Acad Sci. 1983;418:48–64. doi: 10.1111/j.1749-6632.1983.tb18054.x. [DOI] [PubMed] [Google Scholar]
  22. Margolies M. N., Marshak-Rothstein A., Gefter M. L. Structural diversity among anti-p-azophenylarsonate monoclonal antibodies from A/J mice; comparison of Id- and Id+ sequences. Mol Immunol. 1981 Dec;18(12):1065–1077. doi: 10.1016/0161-5890(81)90022-5. [DOI] [PubMed] [Google Scholar]
  23. Marshak-Rothstein A., Margolies M. N., Benedetto J. D., Gefter M. L. Two structurally distinct and independently regulated idiotypic families associated with the A/J response to azophenylarsonate. Eur J Immunol. 1981 Jul;11(7):565–572. doi: 10.1002/eji.1830110709. [DOI] [PubMed] [Google Scholar]
  24. Naparstek Y., Duggan D., Schattner A., Madaio M. P., Goni F., Frangione B., Stollar B. D., Kabat E. A., Schwartz R. S. Immunochemical similarities between monoclonal antibacterial Waldenstrom's macroglobulins and monoclonal anti-DNA lupus autoantibodies. J Exp Med. 1985 Jun 1;161(6):1525–1538. doi: 10.1084/jem.161.6.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Near R. I., Juszczak E. C., Huang S. Y., Sicari S. A., Margolies M. N., Gefter M. L. Expression and rearrangement of homologous immunoglobulin VH genes in two mouse strains. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2167–2171. doi: 10.1073/pnas.81.7.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pisetsky D. S., Hoch S. O., Klatt C. L., O'Donnell M. A., Keene J. D. Specificity and idiotypic analysis of a monoclonal anti-Sm antibody with anti-DNA activity. J Immunol. 1985 Dec;135(6):4080–4085. [PubMed] [Google Scholar]
  27. Prabhakar B. S., Saegusa J., Onodera T., Notkins A. L. Lymphocytes capable of making monoclonal autoantibodies that react with multiple organs are a common feature of the normal B cell repertoire. J Immunol. 1984 Dec;133(6):2815–2817. [PubMed] [Google Scholar]
  28. Rothstein T. L., Gefter M. L. Affinity analysis of idiotype-positive and idiotype-negative Ars-binding hybridoma proteins and Ars-immune sera. Mol Immunol. 1983 Feb;20(2):161–168. doi: 10.1016/0161-5890(83)90127-x. [DOI] [PubMed] [Google Scholar]
  29. Satoh J., Prabhakar B. S., Haspel M. V., Ginsberg-Fellner F., Notkins A. L. Human monoclonal autoantibodies that react with multiple endocrine organs. N Engl J Med. 1983 Jul 28;309(4):217–220. doi: 10.1056/NEJM198307283090405. [DOI] [PubMed] [Google Scholar]
  30. Schubert D., Jobe A., Cohn M. Mouse myelomas producing precipitating antibody to nucleic acid bases and-or nitrophenyl derivatives. Nature. 1968 Nov 30;220(5170):882–885. doi: 10.1038/220882a0. [DOI] [PubMed] [Google Scholar]
  31. Schwartz R. S., Stollar B. D. Origins of anti-DNA autoantibodies. J Clin Invest. 1985 Feb;75(2):321–327. doi: 10.1172/JCI111704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Serban D., Rordorf-Adam C., Sun Y. Z., Gordon J. Murine polyspecific antibodies. I. Monoclonal and serum anti-DNA antibodies cross-reactive with 2,4,6-trinitrophenyl derivatives. J Immunol. 1985 Nov;135(5):3122–3127. [PubMed] [Google Scholar]
  33. Sharon J., Gefter M. L., Manser T., Morrison S. L., Oi V. T., Ptashne M. Expression of a VHC kappa chimaeric protein in mouse myeloma cells. Nature. 1984 May 24;309(5966):364–367. doi: 10.1038/309364a0. [DOI] [PubMed] [Google Scholar]
  34. Shoenfeld Y., Hsu-Lin S. C., Gabriels J. E., Silberstein L. E., Furie B. C., Furie B., Stollar B. D., Schwartz R. S. Production of autoantibodies by human-human hybridomas. J Clin Invest. 1982 Jul;70(1):205–208. doi: 10.1172/JCI110595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shoenfeld Y., Isenberg D. A., Rauch J., Madaio M. P., Stollar B. D., Schwartz R. S. Idiotypic cross-reactions of monoclonal human lupus autoantibodies. J Exp Med. 1983 Sep 1;158(3):718–730. doi: 10.1084/jem.158.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Siekevitz M., Huang S. Y., Gefter M. L. The genetic basis of antibody production: a single heavy chain variable region gene encodes all molecules bearing the dominant anti-arsonate idiotype in the strain A mouse. Eur J Immunol. 1983 Feb;13(2):123–132. doi: 10.1002/eji.1830130207. [DOI] [PubMed] [Google Scholar]
  37. Underwood J. R., Pedersen J. S., Chalmers P. J., Toh B. H. Hybrids from normal, germ free, nude and neonatal mice produce monoclonal autoantibodies to eight different intracellular structures. Clin Exp Immunol. 1985 May;60(2):417–426. [PMC free article] [PubMed] [Google Scholar]
  38. Wysocki L., Manser T., Gefter M. L. Somatic evolution of variable region structures during an immune response. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1847–1851. doi: 10.1073/pnas.83.6.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES