Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Jan 1;165(1):29–46. doi: 10.1084/jem.165.1.29

Antibody-defective, genetically susceptible CBA/N mice have an altered Salmonella typhimurium-specific B cell repertoire

PMCID: PMC2188252  PMID: 2432151

Abstract

CBA/N mice, which express the X-linked immunodeficiency gene xid, are susceptible to Salmonella typhimurium. The basis for this susceptibility is currently unknown. However, previous studies (10) from this laboratory have provided evidence that susceptibility may be due to a defective anti-S. typhimurium antibody response. In that report we hypothesized that the defective antibody response may be a reflection of an altered S. typhimurium-specific B cell repertoire. In the studies described here, we have investigated this hypothesis using a modification of the in vitro splenic focus system. The frequency and characteristics of salmonella-specific B cells in normal, innately resistant, CBA/Ca mice have been compared with those of salmonella- susceptible, anti-S. typhimurium antibody-defective CBA/N mice. The results show that CBA/N mice express no primary or secondary S. typhimurium-specific B cell precursors after stimulation with an acetone-killed and dried (AKD) preparation of S. typhimurium strain TML. However, after three immunizations, the CBA/N tertiary frequency of 15.4 per 10(6) splenic B cells was similar to the primary precursor frequency in immunologically normal CBA/Ca mice, but 23-fold lower than the tertiary precursor frequency in CBA/Ca control mice. Moreover, CBA/N mice had an altered isotype distribution pattern after stimulation with AKD-TML. Greater than 70% of the tertiary CBA/N TML- specific B cells secreted IgG2, in contrast to either nonimmune or primed control mice. In addition, 80% of the CBA/N TML-specific B cells secreted only a single isotype, whereas the majority of B cells from primed normal mice secreted multiple isotypes. Fine specificity analysis of the TML-specific B cells indicated that the array of antigenic determinants to which CBA/N B cells could respond was restricted. Although the majority of primed CBA/Ca and primed CBA/N B cells were specific for LPS, the fine specificity pattern exhibited by CBA/N B cells was similar to that observed in unprimed normal mice, i.e., the vast majority were specific for the O antigen region of the LPS molecule. In contrast, a major portion of the LPS-specific B cells in primed CBA/Ca mice were directed against the KDO/lipid A region of the LPS molecule. Therefore, it appears that CBA/N mice lack or are unable to stimulate the B cell subset that predominates in primed, normal mice. Taken together, these studies indicate that the basis for susceptibility of CBA/N mice to S. typhimurium is multifactorial and suggests that the inability of some animals to respond to some infectious agents may be related to holes in their B cell repertoire.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A., Scher I., Sharrow S. O., Smith A. H., Paul W. E., Sachs D. H., Sell K. W. B-lymphocyte heterogeneity: development and characterization of an alloantiserum which distinguishes B-lymphocyte differentiation alloantigens. J Exp Med. 1977 Jan 1;145(1):101–110. doi: 10.1084/jem.145.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amsbaugh D. F., Hansen C. T., Prescott B., Stashak P. W., Barthold D. R., Baker P. J. Genetic control of the antibody response to type 3 pneumococcal polysaccharide in mice. I. Evidence that an X-linked gene plays a decisive role in determining responsiveness. J Exp Med. 1972 Oct 1;136(4):931–949. doi: 10.1084/jem.136.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boswell H. S., Sharrow S. O., Singer A. Role of accessory cells in B cell activation. I. Macrophage presentation of TNP-Ficoll: evidence for macrophage-B cell interaction. J Immunol. 1980 Feb;124(2):989–996. [PubMed] [Google Scholar]
  4. Clough E. R., Levy D. A., Cebra J. J. CBA/N X BALB/cJ F1 male and female mice can be primed to express quantitatively equivalent secondary anti-phosphocholine responses. J Immunol. 1981 Jan;126(1):387–389. [PubMed] [Google Scholar]
  5. Collins F. M. Vaccines and cell-mediated immunity. Bacteriol Rev. 1974 Dec;38(4):371–402. doi: 10.1128/br.38.4.371-402.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dennert G., Hyman R., Lesley J., Trowbridge I. S. Effects of cytotoxic monoclonal antibody specific for T200 glycoprotein on functional lymphoid cell populations. Cell Immunol. 1980 Aug 1;53(2):350–364. doi: 10.1016/0008-8749(80)90335-4. [DOI] [PubMed] [Google Scholar]
  7. Elkins K., Metcalf E. S. Monoclonal antibodies demonstrate multiple epitopes on the O antigens of Salmonella typhimurium LPS. J Immunol. 1984 Oct;133(4):2255–2260. [PubMed] [Google Scholar]
  8. Feeney A. J., Mosier D. E. Helper T lymphocytes from xid and normal mice support anti-phosphocholine antibody responses with equivalent T15, 511, and 603 idiotypic composition. J Immunol. 1984 Dec;133(6):2868–2873. [PubMed] [Google Scholar]
  9. Gearhart P. J., Hurwitz J. L., Cebra J. J. Successive switching of antibody isotypes expressed within the lines of a B-cell clone. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5424–5428. doi: 10.1073/pnas.77.9.5424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giannella R. A., Broitman S. A., Zamcheck N. Salmonella enteritis. II. Fulminant diarrhea in and effects on the small intestine. Am J Dig Dis. 1971 Nov;16(11):1007–1013. doi: 10.1007/BF02235013. [DOI] [PubMed] [Google Scholar]
  11. Huber B., Gershon R. K., Cantor H. Identification of a B-cell surface structure involved in antigen-dependent triggering: absence of this structure on B cells from CBA/N mutant mice. J Exp Med. 1977 Jan 1;145(1):10–20. doi: 10.1084/jem.145.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Janeway C. A., Jr, Barthold D. R. An analysis of the defective response of CBA/N mice to T-dependent antigens. J Immunol. 1975 Oct;115(4):898–900. [PubMed] [Google Scholar]
  13. Janeway C. A., Jr, Bert D. L., Mosier D. E. Cell cooperation during in vivo anti-hapten antibody responses. VI. Evidence for an allogeneic effect replacing one of two helper T cells. Eur J Immunol. 1980 Apr;10(4):236–241. doi: 10.1002/eji.1830100403. [DOI] [PubMed] [Google Scholar]
  14. Kenny J. J., Yaffe L. J., Ahmed A., Metcalf E. S. Contribution of Lyb 5+ and Lyb 5- B cells to the primary and secondary phosphocholine-specific antibody response. J Immunol. 1983 Jun;130(6):2574–2579. [PubMed] [Google Scholar]
  15. Kimoto M., Kishimoto T., Noguchi S., Watanabe T., Yamamura Y. Regulation of antibody response in different immunoglobulin classes. II. Induction of in vitro IgE antibody response in murine spleen cells and demonstration of a possible involvement of distinct T-helper cells in IgE and IgG antibody responses. J Immunol. 1977 Mar;118(3):840–845. [PubMed] [Google Scholar]
  16. Kishimoto T., Ishizaka K. Regulation of antibody response in vitro. VI. Carrier-specific helper cells for IgG and IgE antibody response. J Immunol. 1973 Sep;111(3):720–732. [PubMed] [Google Scholar]
  17. Kishimoto T., Shigemoto S., Watanabe T., Yamamura Y. Demonstration of phosphorylcholine-specific IgE B cells in CBA/N mice. J Immunol. 1979 Sep;123(3):1039–1043. [PubMed] [Google Scholar]
  18. Klinman N. R., Pickard A. R., Sigal N. H., Gearhart P. J., Metcalf E. S., Pierce S. K. Assessing B cell diversification by antigen receptor and precursor cell analysis. Ann Immunol (Paris) 1976 Jun-Jul;127(3-4):489–502. [PubMed] [Google Scholar]
  19. Kung J. T., Sharrow S. O., Ahmed A., Habbersett R., Scher I., Paul W. E. B lymphocyte subpopulation defined by a rat monoclonal antibody, 14G8. J Immunol. 1982 May;128(5):2049–2056. [PubMed] [Google Scholar]
  20. Kuritani T., Cooper M. D. Human b-cell differentiation. I. Analysis of immunoglobulin heavy chain switching using monoclonal anti-immunoglobulin M, G, and A antibodies and pokeweed mitogen-induced plasma cell differentiation. J Exp Med. 1982 Mar 1;155(3):839–851. doi: 10.1084/jem.155.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LANDY M. Enhancement of the immunogenicity of typhoid vaccine by retention of the V1 antigen. Am J Hyg. 1953 Sep;58(2):148–164. doi: 10.1093/oxfordjournals.aje.a119596. [DOI] [PubMed] [Google Scholar]
  22. Marshak-Rothstein A., Fink P., Gridley T., Raulet D. H., Bevan M. J., Gefter M. L. Properties and applications of monoclonal antibodies directed against determinants of the Thy-1 locus. J Immunol. 1979 Jun;122(6):2491–2497. [PubMed] [Google Scholar]
  23. Metcalf E. S., O'Brien A. D. Characterization of murine antibody response to Salmonella typhimurium by a class-specific solid-phase radioimmunoassay. Infect Immun. 1981 Jan;31(1):33–41. doi: 10.1128/iai.31.1.33-41.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Metcalf E. S., Scher I., Klinman N. R. Susceptibility to in vitro tolerance induction of adult B cells from mice with an X-linked B-cell defect. J Exp Med. 1980 Feb 1;151(2):486–491. doi: 10.1084/jem.151.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mongini P. K., Paul W. E., Metcalf E. S. IgG subclass, IgE, and IgA anti-trinitrophenyl antibody production within trinitrophenyl-Ficoll-responsive B cell clones. Evidence in support of three distinct switching pathways. J Exp Med. 1983 Jan 1;157(1):69–85. doi: 10.1084/jem.157.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mongini P. K., Paul W. E., Metcalf E. S. T cell regulation of immunoglobulin class expression in the antibody response to trinitrophenyl-ficoll. Evidence for T cell enhancement of the immunoglobulin class switch. J Exp Med. 1982 Mar 1;155(3):884–902. doi: 10.1084/jem.155.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Brien A. D., Scher I., Campbell G. H., MacDermott R. P., Formal S. B. Susceptibility of CBA/N mice to infection with Salmonella typhimurium: influence of the X-linked gene controlling B lymphocyte function. J Immunol. 1979 Aug;123(2):720–724. [PubMed] [Google Scholar]
  28. O'Brien A. D., Scher I., Metcalf E. S. Genetically conferred defect in anti-Salmonella antibody formation renders CBA/N mice innately susceptible to Salmonella typhimurium infection. J Immunol. 1981 Apr;126(4):1368–1372. [PubMed] [Google Scholar]
  29. Ono S., Yaffe L. J., Ryan J. L., Singer A. Functional heterogeneity of the Lyb-5- B cell subpopulation: mutant xid B cells and normal Lyb-5- B cells differ in their responsiveness to phenol-extracted lipopolysaccharide. J Immunol. 1983 May;130(5):2014–2021. [PubMed] [Google Scholar]
  30. Perlmutter R. M., Hansburg D., Briles D. E., Nicolotti R. A., Davie J. M. Subclass restriction of murine anti-carbohydrate antibodies. J Immunol. 1978 Aug;121(2):566–572. [PubMed] [Google Scholar]
  31. Perlmutter R. M., Nahm M., Stein K. E., Slack J., Zitron I., Paul W. E., Davie J. M. Immunoglobulin subclass-specific immunodeficiency in mice with an X-linked B-lymphocyte defect. J Exp Med. 1979 Apr 1;149(4):993–998. doi: 10.1084/jem.149.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Press J. L., Giorgetti C. A. Clonal analysis of the primary and secondary B cell responses of neonatal, adult, and xid mice to (T,G)-A--L. J Immunol. 1986 Aug 1;137(3):784–790. [PubMed] [Google Scholar]
  33. Quintáns J., Quan Z. S., Arias M. A. Mice with the xid defect have helper cells for T15 idiotype-dominant anti-phosphorylcholine primary and secondary plaque-forming cells responses. J Exp Med. 1982 Apr 1;155(4):1245–1250. doi: 10.1084/jem.155.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Romeo D., Girard A., Rothfield L. Reconstitution of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid. J Mol Biol. 1970 Nov 14;53(3):475–490. doi: 10.1016/0022-2836(70)90078-1. [DOI] [PubMed] [Google Scholar]
  35. Rosenstreich D. L., Vogel S. N., Jacques A., Wahl L. M., Scher I., Mergenhagen S. E. Differential endotoxin sensitivity of lymphocytes and macrophages from mice with an X-linked defect in B cell maturation. J Immunol. 1978 Aug;121(2):685–690. [PubMed] [Google Scholar]
  36. Scher I., Ahmed A., Strong D. M., Steinberg A. D., Paul W. E. X-linked B-lymphocyte immune defect in CBA/HN mice. I. Studies of the function and composition of spleen cells. J Exp Med. 1975 Apr 1;141(4):788–803. [PMC free article] [PubMed] [Google Scholar]
  37. Scher I., Sharrow S. O., Paul W. E. X-linked B-lymphocyte defect in CBA/N mice. III. Abnormal development of B-lymphocyte populations defined by their density of surface immunoglobulin. J Exp Med. 1976 Aug 1;144(2):507–518. doi: 10.1084/jem.144.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scher I. The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity. Adv Immunol. 1982;33:1–71. doi: 10.1016/s0065-2776(08)60834-2. [DOI] [PubMed] [Google Scholar]
  39. Singer A., Asano Y., Shigeta M., Hathcock K. S., Ahmed A., Fathman C. G., Hodes R. J. Distinct B cell subpopulations differ in their genetic requirements for activation by T helper cells. Immunol Rev. 1982;64:137–160. doi: 10.1111/j.1600-065x.1982.tb00422.x. [DOI] [PubMed] [Google Scholar]
  40. Subbarao B., Ahmed A., Paul W. E., Scher I., Lieberman R., Mosier D. E. Lyb-7, a new B cell alloantigen controlled by genes linked to the IgCH locus. J Immunol. 1979 Jun;122(6):2279–2285. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES