Abstract
Our earlier work revealed that PGE-mediated inactivation of NK cells in tumor-bearing mice by host macrophages promoted spontaneous lung metastasis that could be prevented or ameliorated by chronic indomethacin therapy. Since PGE was found to suppress the in vitro development and/or activation of a family of tumoricidal lymphocytes such as CTL, NK, and LAK cells by one or both of two mechanisms, that is to say, a down regulation of IL-2-R and an inhibition of IL-2 production, the present study tested whether a combined therapy with indomethacin and IL-2 was more effective than one with indomethacin or IL-2 alone in ameliorating established experimental lung metastasis. B6 mice injected intravenously with 10(6) highly metastatic B16F10 melanoma cells showed profuse micrometastases in the lungs by day 5, and macrometastases by day 10 which were confluent on day 21. Chronic indomethacin therapy by the oral route (14 micrograms/ml in drinking water) starting on day 0 or day 5, or a single round of IL-2 therapy (25,000 U rIL-2, every 8 h for 5 d on days 10-14) reduced the number of metastatic nodules by two-thirds (from a median of 473 in control mice receiving vehicles alone) by day 21. A single round of IL-2 as above, combined with either protocol of indomethacin therapy, completely or nearly completely irradicated the lung metastases, corroborated by a histological examination. An evaluation of splenic killer cell activity measured with a 4-h 51Cr-release assay against NK-sensitive YAC-1 lymphoma and B16F10 melanoma or NK-resistant thymic lymphoma 9705 targets revealed negligible activity in control tumor-bearing mice, and a good restoration of activity against NK-sensitive targets with either protocols of indomethacin therapy. IL-2 alone or a combination of IL-2 and indomethacin given by either protocol generated strong killer activity against all these targets, most marked with the combination therapy. Splenic killer cell phenotype in normal as well as all treated animals was ASGM1+, Thy-1-, and Lyt-2-. The combination therapy resulted in the strongest mononuclear cell infiltration in the lungs, with areas of young granulation tissue suggestive of repair sites of original metastases.
Full Text
The Full Text of this article is available as a PDF (1,022.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cahill J., Hopper K. E. Immunoregulation by macrophages. III. Prostaglandin E suppresses lymphocyte activation but not macrophage effector function during Salmonella enteritidis infection. Int J Immunopharmacol. 1984;6(1):9–17. doi: 10.1016/0192-0561(84)90029-8. [DOI] [PubMed] [Google Scholar]
- Chouaib S., Welte K., Mertelsmann R., Dupont B. Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin 2 production and down-regulation of transferrin receptor expression. J Immunol. 1985 Aug;135(2):1172–1179. [PubMed] [Google Scholar]
- Fidler I. J. Selection of successive tumour lines for metastasis. Nat New Biol. 1973 Apr 4;242(118):148–149. doi: 10.1038/newbio242148a0. [DOI] [PubMed] [Google Scholar]
- Fulton A. M. Effects of indomethacin on the growth of cultured mammary tumors. Int J Cancer. 1984 Mar 15;33(3):375–379. doi: 10.1002/ijc.2910330316. [DOI] [PubMed] [Google Scholar]
- Fulton A. M., Heppner G. H. Relationships of prostaglandin E and natural killer sensitivity to metastatic potential in murine mammary adenocarcinomas. Cancer Res. 1985 Oct;45(10):4779–4784. [PubMed] [Google Scholar]
- Fulton A. M. In vivo effects of indomethacin on the growth of murine mammary tumors. Cancer Res. 1984 Jun;44(6):2416–2420. [PubMed] [Google Scholar]
- Fulton A. M., Levy J. G. Inhibition of murine tumor growth and prostaglandin synthesis by indomethacin. Int J Cancer. 1980 Nov 15;26(5):669–673. doi: 10.1002/ijc.2910260520. [DOI] [PubMed] [Google Scholar]
- GEHAN E. A. A GENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES. Biometrika. 1965 Jun;52:203–223. [PubMed] [Google Scholar]
- Goodwin J. S. Prostaglandin synthetase inhibitors as immunoadjuvants in the treatment of cancer. J Immunopharmacol. 1980;2(4):397–424. doi: 10.3109/08923978009026403. [DOI] [PubMed] [Google Scholar]
- Haliotis T., Ball J. K., Dexter D., Roder J. C. Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice. Int J Cancer. 1985 Apr 15;35(4):505–513. doi: 10.1002/ijc.2910350414. [DOI] [PubMed] [Google Scholar]
- Hanna N., Fidler I. J. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst. 1980 Oct;65(4):801–809. doi: 10.1093/jnci/65.4.801. [DOI] [PubMed] [Google Scholar]
- Herman J., Rabson A. R. Prostaglandin E2 depresses natural cytotoxicity by inhibiting interleukin-1 production by large granular lymphocytes. Clin Exp Immunol. 1984 Aug;57(2):380–384. [PMC free article] [PubMed] [Google Scholar]
- Kendall R. A., Targan S. The dual effect of prostaglandin (PGE2) and ethanol on the natural killer cytolytic process: effector activation and NK-cell-target cell conjugate lytic inhibition. J Immunol. 1980 Dec;125(6):2770–2777. [PubMed] [Google Scholar]
- Lafreniere R., Rosenberg S. A. Adoptive immunotherapy of murine hepatic metastases with lymphokine activated killer (LAK) cells and recombinant interleukin 2 (RIL 2) can mediate the regression of both immunogenic and nonimmunogenic sarcomas and an adenocarcinoma. J Immunol. 1985 Dec;135(6):4273–4280. [PubMed] [Google Scholar]
- Lafreniere R., Rosenberg S. A. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res. 1985 Aug;45(8):3735–3741. [PubMed] [Google Scholar]
- Lala P. K., McKenzie I. F. An analysis of T lymphocyte subsets in tumour-transplanted mice on the basis of Lyt antigenic markers and functions. Immunology. 1982 Dec;47(4):663–677. [PMC free article] [PubMed] [Google Scholar]
- Lala P. K., Parhar R. S., Singh P. Indomethacin therapy abrogates the prostaglandin-mediated suppression of natural killer activity in tumor-bearing mice and prevents tumor metastasis. Cell Immunol. 1986 Apr 15;99(1):108–118. doi: 10.1016/0008-8749(86)90220-0. [DOI] [PubMed] [Google Scholar]
- Lala P. K., Santer V., Libenson H., Parhar R. S. Changes in the host natural killer cell population in mice during tumor development. 1. Kinetics and in vivo significance. Cell Immunol. 1985 Jul;93(2):250–264. doi: 10.1016/0008-8749(85)90132-7. [DOI] [PubMed] [Google Scholar]
- Mazumder A., Rosenberg S. A. Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. J Exp Med. 1984 Feb 1;159(2):495–507. doi: 10.1084/jem.159.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merluzzi V. J. Comparison of murine lymphokine-activated killer cells, natural killer cells, and cytotoxic T lymphocytes. Cell Immunol. 1985 Oct 1;95(1):95–104. doi: 10.1016/0008-8749(85)90298-9. [DOI] [PubMed] [Google Scholar]
- Mulé J. J., Ettinghausen S. E., Spiess P. J., Shu S., Rosenberg S. A. Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: survival benefit and mechanisms of tumor escape in mice undergoing immunotherapy. Cancer Res. 1986 Feb;46(2):676–683. [PubMed] [Google Scholar]
- Mulé J. J., Shu S., Rosenberg S. A. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo. J Immunol. 1985 Jul;135(1):646–652. [PubMed] [Google Scholar]
- Mulé J. J., Shu S., Schwarz S. L., Rosenberg S. A. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science. 1984 Sep 28;225(4669):1487–1489. doi: 10.1126/science.6332379. [DOI] [PubMed] [Google Scholar]
- Mulé J. J., Yang J., Shu S., Rosenberg S. A. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells. J Immunol. 1986 May 15;136(10):3899–3909. [PubMed] [Google Scholar]
- Parhar R. S., Lala P. K. Changes in the host natural killer cell population in mice during tumor development. 2. The mechanism of suppression of NK activity. Cell Immunol. 1985 Jul;93(2):265–279. doi: 10.1016/0008-8749(85)90133-9. [DOI] [PubMed] [Google Scholar]
- Poste G., Doll J., Fidler I. J. Interactions among clonal subpopulations affect stability of the metastatic phenotype in polyclonal populations of B16 melanoma cells. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6226–6230. doi: 10.1073/pnas.78.10.6226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg S. A. Adoptive immunotherapy of cancer: accomplishments and prospects. Cancer Treat Rep. 1984 Jan;68(1):233–255. [PubMed] [Google Scholar]
- Rosenberg S. A., Grimm E. A., McGrogan M., Doyle M., Kawasaki E., Koths K., Mark D. F. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science. 1984 Mar 30;223(4643):1412–1414. doi: 10.1126/science.6367046. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Lotze M. T. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681–709. doi: 10.1146/annurev.iy.04.040186.003341. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Lotze M. T., Muul L. M., Leitman S., Chang A. E., Ettinghausen S. E., Matory Y. L., Skibber J. M., Shiloni E., Vetto J. T. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985 Dec 5;313(23):1485–1492. doi: 10.1056/NEJM198512053132327. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Mulé J. J., Spiess P. J., Reichert C. M., Schwarz S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985 May 1;161(5):1169–1188. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stitz L., Baenziger J., Pircher H., Hengartner H., Zinkernagel R. M. Effect of rabbit anti-asialo GM1 treatment in vivo or with anti-asialo GM1 plus complement in vitro on cytotoxic T cell activities. J Immunol. 1986 Jun 15;136(12):4674–4680. [PubMed] [Google Scholar]
- Ting C. C., Wunderlich J. R., Hargrove M. E., Winkler D. In vitro and in vivo antitumor activity of lymphokine-induced cytotoxic cells. Int J Cancer. 1985 Jul 15;36(1):117–123. doi: 10.1002/ijc.2910360118. [DOI] [PubMed] [Google Scholar]
- Ting C. C., Yang S. S., Hargrove M. E. Lymphokine-induced cytotoxicity: characterization of effectors, precursors, and regulatory ancillary cells. Cancer Res. 1986 Feb;46(2):513–518. [PubMed] [Google Scholar]
- Wang A., Lu S. D., Mark D. F. Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science. 1984 Jun 29;224(4656):1431–1433. doi: 10.1126/science.6427925. [DOI] [PubMed] [Google Scholar]
- Wexler H. Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst. 1966 Apr;36(4):641–645. doi: 10.1093/jnci/36.4.641. [DOI] [PubMed] [Google Scholar]
- Yang S. S., Malek T. R., Hargrove M. E., Ting C. C. Lymphokine-induced cytotoxicity: requirement of two lymphokines for the induction of optimal cytotoxic response. J Immunol. 1985 Jun;134(6):3912–3919. [PubMed] [Google Scholar]