Abstract
A well-defined antigen/antibody system was used to evaluate the effect of immune tolerance on the spectrum of specificities of natural antibodies. The antibody used in this study, anti-Gal, is a naturally occurring, polyclonal IgG that constitutes 1% of the circulating IgG in humans. We have previously shown that anti-Gal, purified from AB sera, specifically interacts with glycosphingolipids bearing a Gal alpha 1---- 3Gal epitope, but not with the closely related B antigen in which the penultimate galactose of the Gal alpha 1----3Gal epitope is fucosylated Gal alpha 1----3(Fuc alpha 1----2)Gal. This narrow specificity was assumed to be the result of an effective immune tolerance mechanism that prevents the expression of antibody clones that can recognize both the Gal alpha 1----3Gal and the self B epitopes. If the assumption that immune tolerance determines the range of anti-Gal specificity is correct, then anti-Gal from individuals lacking the B antigen (A and O blood types) would be expected to interact with both Gal alpha 1---- 3Gal and Gal alpha 1----3(Fuc alpha 1----2)Gal epitopes. In this study, anti-Gal from the serum of individuals of various blood types was purified by affinity chromatography on Gal alpha 1----3Gal adsorbent and tested for its reaction with the B antigen. Whereas anti-Gal from AB and B individuals only reacted with Gal alpha 1----3Gal epitopes, anti-Gal from A and O individuals reacted with both Gal alpha 1----3Gal and B epitopes. Furthermore, it was determined that the majority of anti-B reactivity in A and O individuals is in fact anti-Gal antibodies capable of recognizing both Gal alpha 1----3Gal and B epitopes. It can be concluded from these results that immune tolerance accurately controls the spectrum of natural antibody specificities by preventing the production of antibody clones that can interact with self antigens.
Full Text
The Full Text of this article is available as a PDF (806.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avrameas S., Dighiero G., Lymberi P., Guilbert B. Studies on natural antibodies and autoantibodies. Ann Immunol (Paris) 1983 Jul-Aug;134D(1):103–113. [PubMed] [Google Scholar]
- Buehler J., Macher B. A. Glycosphingolipid immunostaining: detection of antibody binding with an avidin-biotin enzyme system. Anal Biochem. 1986 Nov 1;158(2):283–287. doi: 10.1016/0003-2697(86)90551-8. [DOI] [PubMed] [Google Scholar]
- Chien J. L., Li S. C., Li Y. T. Isolation and characterization of a heptaglycosylceramide from bovine erythrocyte membranes. J Lipid Res. 1979 Jul;20(5):669–673. [PubMed] [Google Scholar]
- Egge H., Kordowicz M., Peter-Katalinić J., Hanfland P. Immunochemistry of I/i-active oligo- and polyglycosylceramides from rabbit erythrocyte membranes. Characterization of linear, di-, and triantennary neolactoglycosphingolipids. J Biol Chem. 1985 Apr 25;260(8):4927–4935. [PubMed] [Google Scholar]
- Eto T., Ichikawa Y., Nishimura K., Ando S., Yamakawa T. Chemistry of lipid of the posthemyolytic residue or stroma of erythrocytes. XVI. Occurrence of ceramide pentasaccharide in the membrane of erythrocytes and reticulocytes of rabbit. J Biochem. 1968 Aug;64(2):205–213. doi: 10.1093/oxfordjournals.jbchem.a128881. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Froehlich J. W., Socha W. W., Wiener A. S., Moor-Jankowski J., Thorington R. W. Blood groups of the mantled howler monkey (Alouatta palliata). J Med Primatol. 1977;6(4):219–231. doi: 10.1159/000459749. [DOI] [PubMed] [Google Scholar]
- GENGOZIAN N. HUMAN A- AND B-LIKE ANTIGENS ON RED CELLS OF MARMOSETS. Proc Soc Exp Biol Med. 1964 Dec;117:858–861. doi: 10.3181/00379727-117-29718. [DOI] [PubMed] [Google Scholar]
- Galili U., Clark M. R., Shohet S. B. Excessive binding of natural anti-alpha-galactosyl immunoglobin G to sickle erythrocytes may contribute to extravascular cell destruction. J Clin Invest. 1986 Jan;77(1):27–33. doi: 10.1172/JCI112286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galili U., Flechner I., Knyszynski A., Danon D., Rachmilewitz E. A. The natural anti-alpha-galactosyl IgG on human normal senescent red blood cells. Br J Haematol. 1986 Feb;62(2):317–324. doi: 10.1111/j.1365-2141.1986.tb02935.x. [DOI] [PubMed] [Google Scholar]
- Galili U., Korkesh A., Kahane I., Rachmilewitz E. A. Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells. Blood. 1983 Jun;61(6):1258–1264. [PubMed] [Google Scholar]
- Galili U., Macher B. A., Buehler J., Shohet S. B. Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1----3)-linked galactose residues. J Exp Med. 1985 Aug 1;162(2):573–582. doi: 10.1084/jem.162.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galili U., Rachmilewitz E. A., Peleg A., Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984 Nov 1;160(5):1519–1531. doi: 10.1084/jem.160.5.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grabar P. Hypothesis. Auto-antibodies and immunological theories: an analytical review. Clin Immunol Immunopathol. 1975 Nov;4(4):453–466. doi: 10.1016/0090-1229(75)90087-2. [DOI] [PubMed] [Google Scholar]
- Guilbert B., Dighiero G., Avrameas S. Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J Immunol. 1982 Jun;128(6):2779–2787. [PubMed] [Google Scholar]
- Jerne N. K. The somatic generation of immune recognition. Eur J Immunol. 1971 Jan;1(1):1–9. doi: 10.1002/eji.1830010102. [DOI] [PubMed] [Google Scholar]
- KABAT E. A. Heterogeneity in extent of the combining regions of human antidextran. J Immunol. 1956 Dec;77(6):377–385. [PubMed] [Google Scholar]
- Landsteiner K., Miller C. P. SEROLOGICAL STUDIES ON THE BLOOD OF THE PRIMATES : I. THE DIFFERENTIATION OF HUMAN AND ANTHROPOID BLOODS. J Exp Med. 1925 Nov 30;42(6):841–852. doi: 10.1084/jem.42.6.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landsteiner K., Miller C. P. SEROLOGICAL STUDIES ON THE BLOOD OF THE PRIMATES : III. DISTRIBUTION OF SEROLOGICAL FACTORS RELATED TO HUMAN ISOAGGLUTINOGENS IN THE BLOOD OF LOWER MONKEYS. J Exp Med. 1925 Nov 30;42(6):863–872. doi: 10.1084/jem.42.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee W. M., Westrick M. A., Macher B. A. Neutral glycosphingolipids of human acute leukemias. J Biol Chem. 1982 Sep 10;257(17):10090–10095. [PubMed] [Google Scholar]
- Lutz H. U., Flepp R., Stringaro-Wipf G. Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells. J Immunol. 1984 Nov;133(5):2610–2618. [PubMed] [Google Scholar]
- Macher B. A., Klock J. C., Fukuda M. N., Fukuda M. Isolation and structural characterization of human lymphocyte and neutrophil gangliosides. J Biol Chem. 1981 Feb 25;256(4):1968–1974. [PubMed] [Google Scholar]
- Macher B. A., Klock J. C. Isolation and chemical characterization of neutral glycosphingolipids of human neutrophils. J Biol Chem. 1980 Mar 10;255(5):2092–2096. [PubMed] [Google Scholar]
- McKibbin J. M., Spencer W. A., Smith E. L., Mansson J. E., Karlsson K. A., Samuelsson B. E., Li Y. T., Li S. C. Lewis blood group fucolipids and their isomers from human and canine intestine. J Biol Chem. 1982 Jan 25;257(2):755–760. [PubMed] [Google Scholar]
- OWEN R. D. Heterogeneity of antibodies to the human blood groups in normal and immune sera. J Immunol. 1954 Jul;73(1):29–39. [PubMed] [Google Scholar]
- Uemura K., Yuzawa M., Taketomi T. Characterization of major glycolipids in bovine erythrocyte membrane. J Biochem. 1978 Feb;83(2):463–471. doi: 10.1093/oxfordjournals.jbchem.a131933. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Arao Y. A new solvent system for the separation of neutral glycosphingolipids. J Lipid Res. 1981 Aug;22(6):1020–1024. [PubMed] [Google Scholar]
- Watkins W. M. Blood-group substances. Science. 1966 Apr 8;152(3719):172–181. doi: 10.1126/science.152.3719.172. [DOI] [PubMed] [Google Scholar]
