Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Mar 1;165(3):705–719. doi: 10.1084/jem.165.3.705

Antiviral antibody-producing cells in parenchymatous organs during persistent virus infection

PMCID: PMC2188291  PMID: 3546579

Abstract

In mice persistently infected with lymphocytic choriomeningitis virus (LCMV), the parenchymatous organs contain infiltrates of mononuclear cells, the sizes and numbers of which vary between strains and become more numerous and extensive when the animals grow older. Histologically, these were found to possess a tissue-like structure, and by use of immunohistologic procedures they were shown to contain plasma cells secreting IgM and IgG. Cells of kidneys, livers, brains, and spleens of LCMV carrier mice were dispersed by digestion with trypsin, leukocytes were separated by density gradient centrifugation, and numbers of cells producing antibodies against LCMV were determined by use of a solid-phase immunoenzymatic technique. In all these organs, cells producing LCMV-specific IgM and IgG antibodies were demonstrated, the latter more numerous than the former. Their numbers correlated with numbers and extent of the lymphoid cell infiltrates. The blood of the same mice was essentially free of antiviral antibody-forming cell. The proportion of cells producing LCMV-specific antibodies to all cells producing Ig of any specificity varied between organs, being lowest in spleen, intermediate in liver and kidney, and highest in the brain, where in individual mice up to 90% of all active cells produced virus- specific antibodies. The LCMV carrier mouse should prove to be a useful animal model to investigate antibody production in parenchymatous organs during persistent virus infections.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Accinni L., Archetti I., Branca M., Hsu K. C., Andres G. Tubulo-interstitial (TI) renal disease associated with chronic lymphocytic choriomeningitis viral infection in mice. Clin Immunol Immunopathol. 1978 Dec;11(4):395–405. doi: 10.1016/0090-1229(78)90167-8. [DOI] [PubMed] [Google Scholar]
  2. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  3. Burke D. S., Nisalak A., Lorsomrudee W., Ussery M. A., Laorpongse T. Virus-specific antibody-producing cells in blood and cerebrospinal fluid in acute Japanese encephalitis. J Med Virol. 1985 Nov;17(3):283–292. doi: 10.1002/jmv.1890170310. [DOI] [PubMed] [Google Scholar]
  4. Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976 Jun;Suppl 5:9–15. [PubMed] [Google Scholar]
  5. Connolly J. H. Additional data on measles virus antibody and antigen in subacute sclerosing panencephalitis. Neurology. 1968 Jan;18(1 Pt 2):87–90. doi: 10.1212/wnl.18.1_part_2.087. [DOI] [PubMed] [Google Scholar]
  6. Esiri M. M., Oppenheimer D. R., Brownell B., Haire M. Distribution of measles antigen and immunoglobulin-containing cells in the CNS in subacute sclerosing panencephalitis (SSPE) and atypical measles encephalitis. J Neurol Sci. 1982 Jan;53(1):29–43. doi: 10.1016/0022-510x(82)90078-8. [DOI] [PubMed] [Google Scholar]
  7. Esiri M. M. Poliomyelitis: immunoglobulin-containing cells in the central nervous system in acute and convalescent phases of the human disease. Clin Exp Immunol. 1980 Apr;40(1):42–48. [PMC free article] [PubMed] [Google Scholar]
  8. FRICK E., SCHEID-SEYDEL L. Untersuchungen mit J 131-markiertem gamma-Globulin zur Frage der Abstammung der Liquoreiweisskörper. Klin Wochenschr. 1958 Sep 15;36(18):857–863. doi: 10.1007/BF01485232. [DOI] [PubMed] [Google Scholar]
  9. Forghani B., Cremer N. E., Johnson K. P., Fein G., Likosky W. H. Comprehensive viral immunology of multiple sclerosis. III. Analysis of CSF antibodies by radioimmunoassay. Arch Neurol. 1980 Oct;37(10):616–619. doi: 10.1001/archneur.1980.00500590040004. [DOI] [PubMed] [Google Scholar]
  10. Forsberg P., Frydén A., Kam-Hansen S. Production of specific antibodies by CSF lymphocytes in patients with herpes zoster. Lancet. 1984 Feb 18;1(8373):404–405. doi: 10.1016/s0140-6736(84)90466-5. [DOI] [PubMed] [Google Scholar]
  11. Fryden A., Link H., Norrby E. Cerebrospinal fluid and serum immunoglobulins and antibody titers in mumps meningitis and aseptic meningitis of other etiology. Infect Immun. 1978 Sep;21(3):852–861. doi: 10.1128/iai.21.3.852-861.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerhard W., Iwasaki Y., Koprowski H. The central nervous system-associated immune response to parainfluenza type I virus in mice. J Immunol. 1978 Apr;120(4):1256–1260. [PubMed] [Google Scholar]
  13. Gerhard W., Taylor A., Sandberg-Wollheim M., Koprowski H. Longitudinal analysis of three intrathecally produced immunoglobulin subpopulations in an MS patient. J Immunol. 1985 Mar;134(3):1555–1560. [PubMed] [Google Scholar]
  14. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  15. Griffin D. E. Immunoglobulins in the cerebrospinal fluid: changes during acute viral encephalitis in mice. J Immunol. 1981 Jan;126(1):27–31. [PubMed] [Google Scholar]
  16. Griffin D. E., Narayan O., Bukowski J. F., Adams R. J., Cohen S. R. The cerebrospinal fluid in visna, a slow viral disease of sheep. Ann Neurol. 1978 Sep;4(3):212–218. doi: 10.1002/ana.410040304. [DOI] [PubMed] [Google Scholar]
  17. HOTCHIN J., COLLINS D. N. GLOMERULONEPHRITIS AND LATE ONSET DISEASE OF MICE FOLLOWING NEONATAL VIRUS INFECTION. Nature. 1964 Sep 26;203:1357–1359. doi: 10.1038/2031357a0. [DOI] [PubMed] [Google Scholar]
  18. Haase A. T. The slow infection caused by visna virus. Curr Top Microbiol Immunol. 1975;72:101–156. doi: 10.1007/978-3-642-66289-8_4. [DOI] [PubMed] [Google Scholar]
  19. Heremans J. F. Immunoglobulin formation and function in different tissues. Curr Top Microbiol Immunol. 1968;45:131–203. doi: 10.1007/978-3-642-50109-8_4. [DOI] [PubMed] [Google Scholar]
  20. KABAT E. A., FREEDMAN D. A. A study of the crystalline albumin, gamma globulin and total protein in the cerebrospinal fluid of 100 cases of multiple sclerosis and in other diseases. Am J Med Sci. 1950 Jan;219(1):55–64. doi: 10.1097/00000441-195001000-00009. [DOI] [PubMed] [Google Scholar]
  21. Kinnman J., Link H., Frydén A. Characterization of antibody activity in oligoclonal immunoglobulin G synthesized within the central nervous system in a patient with tuberculous meningitis. J Clin Microbiol. 1981 Jan;13(1):30–35. doi: 10.1128/jcm.13.1.30-35.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LEHMANN-GRUBE F. LYMPHOCYTIC CHORIOMENINGITIS IN THE MOUSE. II. ESTABLISHMENT OF CARRIER COLONIES. Arch Gesamte Virusforsch. 1964;14:351–357. doi: 10.1007/BF01555828. [DOI] [PubMed] [Google Scholar]
  23. Lehmann-Grube F., Assmann U., Löliger C., Moskophidis D., Löhler J. Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in the clearance of lymphocytic choriomeningitis virus from spleens of mice. J Immunol. 1985 Jan;134(1):608–615. [PubMed] [Google Scholar]
  24. Mehta P. D., Kane A., Thormar H. Quantitation of measles virus-specific immunoglobulins in serum, CSF, and brain extract from patients with subactue sclerosing panencephalitis. J Immunol. 1977 Jun;118(6):2254–2261. [PubMed] [Google Scholar]
  25. Moskophidis D., Lehmann-Grube F. The immune response of the mouse to lymphocytic choriomeningitis virus. IV. Enumeration of antibody-producing cells in spleens during acute and persistent infection. J Immunol. 1984 Dec;133(6):3366–3370. [PubMed] [Google Scholar]
  26. Nathanson N., Petursson G., Georgsson G., Palsson P. A., Martin J. R., Miller A. Pathogenesis of visna. IV. Spinal fluid studies. J Neuropathol Exp Neurol. 1979 May;38(3):197–208. doi: 10.1097/00005072-197905000-00001. [DOI] [PubMed] [Google Scholar]
  27. Norrby E., Link H., Olsson J. E. Measles virus antibodies in multiple sclerosis. Comparison of antibody titers in cerebrospinal fluid and serum. Arch Neurol. 1974 Apr;30(4):285–292. doi: 10.1001/archneur.1974.00490340013002. [DOI] [PubMed] [Google Scholar]
  28. Oldstone M. B., Dixon F. J. Persistent lymphocytic choriomeningitis viral infection. 3. Virus-anti-viral antibody complexes and associated chronic disease following transplacental infection. J Immunol. 1970 Oct;105(4):829–837. [PubMed] [Google Scholar]
  29. Oldstone M. B., Tishon A., Buchmeier M. J. Virus-induced immune complex disease: genetic control of C1q binding complexes in the circulation of mice persistently infected with lymphocytic choriomeningitis virus. J Immunol. 1983 Feb;130(2):912–918. [PubMed] [Google Scholar]
  30. Oldstone M. B. Virus neutralization and virus-induced immune complex disease. Virus-antibody union resulting in immunoprotection or immunologic injury--two sides of the same coin. Prog Med Virol. 1975;19:84–119. [PubMed] [Google Scholar]
  31. Pollard M., Sharon N. Immunoproliferative effects of lymphocytic choriomeningitis virus in germfree mice. Proc Soc Exp Biol Med. 1969 Oct;132(1):242–246. doi: 10.3181/00379727-132-34188. [DOI] [PubMed] [Google Scholar]
  32. Porter D. D., Larsen A. E., Porter H. G. Aleutian disease of mink. Adv Immunol. 1980;29:261–286. doi: 10.1016/s0065-2776(08)60046-2. [DOI] [PubMed] [Google Scholar]
  33. Prineas J. W. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science. 1979 Mar 16;203(4385):1123–1125. doi: 10.1126/science.424741. [DOI] [PubMed] [Google Scholar]
  34. Rivers T. M., Scott T. F. MENINGITIS IN MAN CAUSED BY A FILTERABLE VIRUS : II. IDENTIFICATION OF THE ETIOLOGICAL AGENT. J Exp Med. 1936 Feb 29;63(3):415–432. doi: 10.1084/jem.63.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sedgwick J. D., Holt P. G. A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods. 1983 Feb 25;57(1-3):301–309. doi: 10.1016/0022-1759(83)90091-1. [DOI] [PubMed] [Google Scholar]
  36. Skinner H. H., Knight E. H., Lancaster M. C. Lymphomas associated with a tolerant lymphocytic choriomeningitis virus infection in mice. Lab Anim. 1980 Apr;14(2):117–121. doi: 10.1258/002367780780942854. [DOI] [PubMed] [Google Scholar]
  37. Sköldenberg B., Kalimo K., Carlström A., Forsgren M., Halonen P. Herpes simplex encephalitis: A serological follow-up study. Synthesis of herpes simplex virus immunoglobulin M, A, and G antibodies and development of oligoclonal immunoglobulin G in the central nervous system. Acta Neurol Scand. 1981 May;63(5):273–285. [PubMed] [Google Scholar]
  38. TRAUB E. Can LCM virus cause lymphomatosis in mice? Arch Gesamte Virusforsch. 1962;11:667–682. doi: 10.1007/BF01243307. [DOI] [PubMed] [Google Scholar]
  39. Tourtellotte W. W., Ma B. I., Brandes D. B., Walsh M. J., Potvin A. R. Quantification of de novo central nervous system IgG measles antibody synthesis in SSPE. Ann Neurol. 1981 Jun;9(6):551–556. doi: 10.1002/ana.410090607. [DOI] [PubMed] [Google Scholar]
  40. Townsend J. J., Stroop W. G., Baringer J. R., Wolinsky J. S., McKerrow J. H., Berg B. O. Neuropathology of progressive rubella panencephalitis after childhood rubella. Neurology. 1982 Feb;32(2):185–190. doi: 10.1212/wnl.32.2.185. [DOI] [PubMed] [Google Scholar]
  41. Traub E. EPIDEMIOLOGY OF LYMPHOCYTIC CHORIOMENINGITIS IN A MOUSE STOCK OBSERVED FOR FOUR YEARS. J Exp Med. 1939 May 31;69(6):801–817. doi: 10.1084/jem.69.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Traub E. Observations on "late onset disease" and tumor incidence in different strains of laboratory mice infected congenitally with LCM virus. II. Experiments with inbred CBA/J mice. Zentralbl Veterinarmed B. 1975 Nov;22(9):783–792. doi: 10.1111/j.1439-0450.1975.tb00644.x. [DOI] [PubMed] [Google Scholar]
  43. Vandvik B., Nilsen R. E., Vartdal F., Norrby E. Mumps meningitis: specific and non-specific antibody responses in the central nervous system. Acta Neurol Scand. 1982 May;65(5):468–487. doi: 10.1111/j.1600-0404.1982.tb03104.x. [DOI] [PubMed] [Google Scholar]
  44. Vandvik B., Norrby E. Oligoclonal IgG antibody response in the central nervous system to different measles virus antigens in subacute sclerosing panencephalitis. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1060–1063. doi: 10.1073/pnas.70.4.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vandvik B., Weil M. L., Grandien M., Norrby E. Progressive rubella virus panencephalitis: synthesis of oligoclonal virus-specific IgG antibodies and homogeneous free light chains in the central nervous system. Acta Neurol Scand. 1978 Jan;57(1):53–64. doi: 10.1111/j.1600-0404.1978.tb04497.x. [DOI] [PubMed] [Google Scholar]
  46. Vartdal F., Vandvik B., Michaelsen T. E., Loe K., Norrby E. Neurosyphilis: intrathecal synthesis of oligoclonal antibodies to Treponema pallidum. Ann Neurol. 1982 Jan;11(1):35–40. doi: 10.1002/ana.410110107. [DOI] [PubMed] [Google Scholar]
  47. Vartdal F., Vandvik B., Norrby E. Viral and bacterial antibody responses in multiple sclerosis. Ann Neurol. 1980 Sep;8(3):248–255. doi: 10.1002/ana.410080305. [DOI] [PubMed] [Google Scholar]
  48. Waksman B. H., Reynolds W. E. Multiple sclerosis as a disease of immune regulation. Proc Soc Exp Biol Med. 1984 Mar;175(3):282–294. doi: 10.3181/00379727-175-41798. [DOI] [PubMed] [Google Scholar]
  49. Walsh M. J., Tourtellotte W. W. Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med. 1986 Jan 1;163(1):41–53. doi: 10.1084/jem.163.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Weil M. L., Itabashi H., Cremer N. E., Oshiro L., Lennette E. H., Carnay L. Chronic progressive panencephalitis due to rubella virus simulating subacute sclerosing panencephalitis. N Engl J Med. 1975 May 8;292(19):994–998. doi: 10.1056/NEJM197505082921903. [DOI] [PubMed] [Google Scholar]
  51. von Boehmer H., Lehmann-Grube F., Flemer R., Heuwinkel R. Multiplication of lymphocytic choriomeningitis virus in cultivated foetal inbred mouse cells and in neonatally infected inbred carrier mice. J Gen Virol. 1974 Nov;25(2):219–228. doi: 10.1099/0022-1317-25-2-219. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES