Abstract
C5-deficient mice differed from C5-sufficient mice both quantitatively and qualitatively in C5 protein, C5 mRNA, and the C5 gene. C5-deficient protein was present as decreased amounts of an unprocessed, single- chain precursor. C5-deficient mRNA was decreased in amount and present in two forms, the smaller of which was the same as the single form in normal cells. Nuclei from both normal and deficient cells contained the larger form of C5 mRNA, and C5-deficient DNA demonstrated differences from the normal pattern on Southern analysis for two restriction enzymes. These data suggest that the primary transcript of the C5- deficient gene is abnormal, retarding the processing of the C5 mRNA, and that the C5-deficient mRNA codes for an abnormal protein.
Full Text
The Full Text of this article is available as a PDF (476.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CINADER B., DUBISKI S., WARDLAW A. C. DISTRIBUTION, INHERITANCE, AND PROPERTIES OF AN ANTIGEN, MUB1, AND ITS RELATION TO HEMOLYTIC COMPLEMENT. J Exp Med. 1964 Nov 1;120:897–924. doi: 10.1084/jem.120.5.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunphy W. G., Rothman J. E. Compartmental organization of the Golgi stack. Cell. 1985 Aug;42(1):13–21. doi: 10.1016/s0092-8674(85)80097-0. [DOI] [PubMed] [Google Scholar]
- Green M. R., Maniatis T., Melton D. A. Human beta-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell. 1983 Mar;32(3):681–694. doi: 10.1016/0092-8674(83)90054-5. [DOI] [PubMed] [Google Scholar]
- Guan J. L., Machamer C. E., Rose J. K. Glycosylation allows cell-surface transport of an anchored secretory protein. Cell. 1985 Sep;42(2):489–496. doi: 10.1016/0092-8674(85)90106-0. [DOI] [PubMed] [Google Scholar]
- Nilsson U. R., Mandle R. J., Jr, McConnell-Mapes J. A. Human C3 and C5: subunit structure and modifications by trypsin and C42-C423. J Immunol. 1975 Feb;114(2 Pt 2):815–822. [PubMed] [Google Scholar]
- Ooi Y. M., Colten H. R. Biosynthesis and post-synthetic modification of a precursor (pro-C5) of the fifth component of mouse complement (C5). J Immunol. 1979 Dec;123(6):2494–2498. [PubMed] [Google Scholar]
- Ooi Y. M., Colten H. R. Genetic defect in secretion of complement C5 in mice. Nature. 1979 Nov 8;282(5735):207–208. doi: 10.1038/282207a0. [DOI] [PubMed] [Google Scholar]
- ROSENBERG L. T., TACHIBANA D. K. Activity of mouse complement. J Immunol. 1962 Dec;89:861–867. [PubMed] [Google Scholar]
- Strunk R. C., Cole F. S., Perlmutter D. H., Colten H. R. gamma-Interferon increases expression of class III complement genes C2 and factor B in human monocytes and in murine fibroblasts transfected with human C2 and factor B genes. J Biol Chem. 1985 Dec 5;260(28):15280–15285. [PubMed] [Google Scholar]
- Strunk R. C., Whitehead A. S., Cole F. S. Pretranslational regulation of the synthesis of the third component of complement in human mononuclear phagocytes by the lipid A portion of lipopolysaccharide. J Clin Invest. 1985 Sep;76(3):985–990. doi: 10.1172/JCI112099. [DOI] [PMC free article] [PubMed] [Google Scholar]