Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 May 1;165(5):1252–1268. doi: 10.1084/jem.165.5.1252

Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis

PMCID: PMC2188317  PMID: 2952749

Abstract

We investigated the underlying mechanisms of systemic autoimmune disease in MRL-+/+, (NZB X NZW)F1, and (NZB X SWR)F1 mice, since these strains develop glomerulonephritis without the superimposition of any secondary lupus-accelerating genes. All three strains manifested a common immunoregulatory defect specific for the production of pathogenic anti-DNA autoantibodies that are of IgG class and cationic in charge. At or just before the age they began to develop lupus nephritis, spleen cells of the mice contained a subpopulation of Th cells that selectively induced their B cells in vitro to produce highly cationic IgG autoantibodies to both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). By contrast, T cells from younger preautoimmune mice were incapable of providing this help. Moreover, only B cells of the older lupus mice could be induced to secrete cationic anti-DNA antibodies of IgG class. B cells of young lupus mice could not produce the cationic autoantibodies even with the help of T cells from the older mice, nor upon stimulation with mitogens. In the older lupus mice we found two sets of Th cells that spontaneously induced the cationic shift in autoantibodies; one set belonged to the classical Th category with L3T4+,Lyt-2- phenotype, whereas the other surprisingly belonged to a double-negative (L3T4-,Lyt-2-), Lyt-1+ subpopulation. The latter set of unusual Th cells were unexpected in these lupus mice since they lacked the lpr (lympho-proliferation) gene. Thus three apparently different murine models of systemic lupus erythematosus possess a common underlying mechanism specific for the spontaneous production of pathogenic anti-DNA autoantibodies.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdou N. I., Wall H., Lindsley H. B., Halsey J. F., Suzuki T. Network theory in autoimmunity. In vitro suppression of serum anti-DNA antibody binding to DNA by anti-idiotypic antibody in systemic lupus erythematosus. J Clin Invest. 1981 May;67(5):1297–1304. doi: 10.1172/JCI110158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Datta S. K., Gavalchin J. Origins of pathogenic anti-DNA idiotypes in the NZB X SWR model of lupus nephritis. Ann N Y Acad Sci. 1986;475:47–58. doi: 10.1111/j.1749-6632.1986.tb20855.x. [DOI] [PubMed] [Google Scholar]
  3. Datta S. K., Manny N., Andrzejewski C., André-Schwartz J., Schwartz R. S. Genetic studies of autoimmunity and retrovirus expression in crosses of New Zealand black mice I. Xenotropic virus. J Exp Med. 1978 Mar 1;147(3):854–871. doi: 10.1084/jem.147.3.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Datta S. K., Naparstek Y., Schwartz R. S. In vitro production of an anti-DNA idiotype by lymphocytes of normal subjects and patients with systemic lupus erythematosus. Clin Immunol Immunopathol. 1986 Mar;38(3):302–318. doi: 10.1016/0090-1229(86)90240-0. [DOI] [PubMed] [Google Scholar]
  5. Datta S. K., Owen F. L., Womack J. E., Riblet R. J. Analysis of recombinant inbred lines derived from "autoimmune" (NZB) and "high leukemia" (C58) strains: independent multigenic systems control B cell hyperactivity, retrovirus expression, and autoimmunity. J Immunol. 1982 Oct;129(4):1539–1544. [PubMed] [Google Scholar]
  6. Datta S. K., Stollar B. D., Schwartz R. S. Normal mice express idiotypes related to autoantibody idiotypes of lupus mice. Proc Natl Acad Sci U S A. 1983 May;80(9):2723–2727. doi: 10.1073/pnas.80.9.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidson W. F., Dumont F. J., Bedigian H. G., Fowlkes B. J., Morse H. C., 3rd Phenotypic, functional, and molecular genetic comparisons of the abnormal lymphoid cells of C3H-lpr/lpr and C3H-gld/gld mice. J Immunol. 1986 Jun 1;136(11):4075–4084. [PubMed] [Google Scholar]
  8. Deheer D. H., Edginton T. S. Cellular events associated with the immunogenesis of anti-erythrocyte autoantibody responses of NZB mice. Transplant Rev. 1976;31:116–155. doi: 10.1111/j.1600-065x.1976.tb01453.x. [DOI] [PubMed] [Google Scholar]
  9. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  10. Dighiero G., Lymberi P., Holmberg D., Lundquist I., Coutinho A., Avrameas S. High frequency of natural autoantibodies in normal newborn mice. J Immunol. 1985 Feb;134(2):765–771. [PubMed] [Google Scholar]
  11. Dixon F. J., Oldstone M. B., Tonietti G. Pathogenesis of immune complex glomerulonephritis of new zealand mice. J Exp Med. 1971 Sep 1;134(3):65–71. [PMC free article] [PubMed] [Google Scholar]
  12. Eastcott J. W., Schwartz R. S., Datta S. K. Genetic analysis of the inheritance of B cell hyperactivity in relation to the development of autoantibodies and glomerulonephritis in NZB x SWR crosses. J Immunol. 1983 Nov;131(5):2232–2239. [PubMed] [Google Scholar]
  13. Ebling F., Hahn B. H. Restricted subpopulations of DNA antibodies in kidneys of mice with systemic lupus. Comparison of antibodies in serum and renal eluates. Arthritis Rheum. 1980 Apr;23(4):392–403. doi: 10.1002/art.1780230402. [DOI] [PubMed] [Google Scholar]
  14. Fowlkes B. J., Edison L., Mathieson B. J., Chused T. M. Early T lymphocytes. Differentiation in vivo of adult intrathymic precursor cells. J Exp Med. 1985 Sep 1;162(3):802–822. doi: 10.1084/jem.162.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gallo G. R., Caulin-Glaser T., Lamm M. E. Charge of circulating immune complexes as a factor in glomerular basement membrane localization in mice. J Clin Invest. 1981 May;67(5):1305–1313. doi: 10.1172/JCI110159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gavalchin J., Datta S. K. The NZB X SWR model of lupus nephritis. II. Autoantibodies deposited in renal lesions show a distinctive and restricted idiotypic diversity. J Immunol. 1987 Jan 1;138(1):138–148. [PubMed] [Google Scholar]
  17. Gavalchin J., Nicklas J. A., Eastcott J. W., Madaio M. P., Stollar B. D., Schwartz R. S., Datta S. K. Lupus prone (SWR x NZB)F1 mice produce potentially nephritogenic autoantibodies inherited from the normal SWR parent. J Immunol. 1985 Feb;134(2):885–894. [PubMed] [Google Scholar]
  18. Gavalchin J., Seder R. A., Datta S. K. The NZB X SWR model of lupus nephritis. I. Cross-reactive idiotypes of monoclonal anti-DNA antibodies in relation to antigenic specificity, charge, and allotype. Identification of interconnected idiotype families inherited from the normal SWR and the autoimmune NZB parents. J Immunol. 1987 Jan 1;138(1):128–137. [PubMed] [Google Scholar]
  19. Giroir B. P., Raps E. C., Lewis R. M., Borel Y. Nucleoside-specific suppression in MRL/MP +/+ mice. Cell Immunol. 1983 Feb 1;75(2):337–347. doi: 10.1016/0008-8749(83)90331-3. [DOI] [PubMed] [Google Scholar]
  20. Hayakawa K., Hardy R. R., Honda M., Herzenberg L. A., Steinberg A. D., Herzenberg L. A. Ly-1 B cells: functionally distinct lymphocytes that secrete IgM autoantibodies. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2494–2498. doi: 10.1073/pnas.81.8.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ishida Y., Sekigawa I., Hamaoki M., Takenouchi T., Yumura W., Sato H., Shirai T. T cells bearing unique membrane antigen and their regulatory role in humoral immune response in mice. Eur J Immunol. 1986 Jan;16(1):109–112. doi: 10.1002/eji.1830160121. [DOI] [PubMed] [Google Scholar]
  22. Kanwar Y. S., Farquhar M. G. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979 Apr;81(1):137–153. doi: 10.1083/jcb.81.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kelley V. E., Roths J. B. Interaction of mutant lpr gene with background strain influences renal disease. Clin Immunol Immunopathol. 1985 Nov;37(2):220–229. doi: 10.1016/0090-1229(85)90153-9. [DOI] [PubMed] [Google Scholar]
  24. Kelley V. E., Winkelstein A. Age- and sex-related glomerulonephritis in New Zealand white mice. Clin Immunol Immunopathol. 1980 Jun;16(2):142–150. doi: 10.1016/0090-1229(80)90198-1. [DOI] [PubMed] [Google Scholar]
  25. Laskin C. A., Haddad G., Soloninka C. A. The regulatory role of NZB T lymphocytes in the production of anti-DNA antibodies in vitro. J Immunol. 1986 Sep 15;137(6):1867–1873. [PubMed] [Google Scholar]
  26. Mach P. S., Kharouby M., Lutcher F., Olivier J. L., Bazely N., Dougados M., Amor B. The in vitro production of anti-nuclear antibodies by human peripheral blood mononuclear cells. Demonstration of T cell requirement and soluble inducing factor(s) for anti-nuclear antibodies triggering in patients with systemic lupus erythematosus. Clin Exp Immunol. 1984 Sep;57(3):535–540. [PMC free article] [PubMed] [Google Scholar]
  27. Manohar V., Brown E., Leiserson W. M., Chused T. M. Expression of Lyt-1 by a subset of B lymphocytes. J Immunol. 1982 Aug;129(2):532–538. [PubMed] [Google Scholar]
  28. Morse H. C., 3rd, Davidson W. F., Yetter R. A., Coffman R. L. A cell-surface antigen shared by B cells and Ly2+ peripheral T cells. Cell Immunol. 1982 Jul 1;70(2):311–320. doi: 10.1016/0008-8749(82)90332-x. [DOI] [PubMed] [Google Scholar]
  29. Primi D., Cazenave P. A. The B cell repertoire revealed by major histocompatibility complex-specific helper T cells. I. Frequencies of a genetically defined V region marker among mitogen- and T helper cell-reactive B lymphocytes in normal and immunized mice. J Exp Med. 1984 Apr 1;159(4):1253–1269. doi: 10.1084/jem.159.4.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Prud'Homme G. J., Park C. L., Fieser T. M., Kofler R., Dixon F. J., Theofilopoulos A. N. Identification of a B cell differentiation factor(s) spontaneously produced by proliferating T cells in murine lupus strains of the lpr/lpr genotype. J Exp Med. 1983 Feb 1;157(2):730–742. doi: 10.1084/jem.157.2.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Raulet D. H., Gottlieb P. D., Bevan M. J. Fractionation of lymphocyte populations with monoclonal antibodies specific for LYT-2.2 and LYT-3.1. J Immunol. 1980 Sep;125(3):1136–1143. [PubMed] [Google Scholar]
  32. Rennke H. G., Cotran R. S., Venkatachalam M. A. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J Cell Biol. 1975 Dec;67(3):638–646. doi: 10.1083/jcb.67.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rohrer J. W., Kemp J. D. Immunoglobulin-dependent helper T cells: studies in the MOPC-315 system suggest a novel surface antigen phenotype. J Immunol. 1986 Sep 15;137(6):1786–1792. [PubMed] [Google Scholar]
  34. Rothfield N. F., Stollar B. D. The relation of immunoglobulin class, pattern of anti-nuclear antibody, and complement-fixing antibodies to DNA in sera from patients with systemic lupus erythematosus. J Clin Invest. 1967 Nov;46(11):1785–1794. doi: 10.1172/JCI105669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rubin R. L., Carr R. I. Anti-DNA activity of IgG F(ab')2 from normal human serum. J Immunol. 1979 Apr;122(4):1604–1607. [PubMed] [Google Scholar]
  36. Sawada S., Talal N. Characteristics of in vitro production of antibodies to DNA in normal and autoimmune mice. J Immunol. 1979 Jun;122(6):2309–2313. [PubMed] [Google Scholar]
  37. Sekigawa I., Ishida Y., Hirose S., Sato H., Shirai T. Cellular basis of in vitro anti-DNA antibody production: evidence for T cell dependence of IgG-class anti-DNA antibody synthesis in the (NZB X NZW)F1 hybrid. J Immunol. 1986 Feb 15;136(4):1247–1252. [PubMed] [Google Scholar]
  38. Smith H. R., Steinberg A. D. Autoimmunity--a perspective. Annu Rev Immunol. 1983;1:175–210. doi: 10.1146/annurev.iy.01.040183.001135. [DOI] [PubMed] [Google Scholar]
  39. Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390. doi: 10.1016/s0065-2776(08)60342-9. [DOI] [PubMed] [Google Scholar]
  40. Wofsy D., Seaman W. E. Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J Exp Med. 1985 Feb 1;161(2):378–391. doi: 10.1084/jem.161.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wysocki L. J., Sato V. L. "Panning" for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2844–2848. doi: 10.1073/pnas.75.6.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zielinski C. C., Waksal S. D., Datta S. K. Thymic epithelium is programmed to induce preleukemic changes in retrovirus expression and thymocyte differentiation in leukemia susceptible mice: studies on bone marrow and thymic chimeras. J Immunol. 1982 Aug;129(2):882–889. [PubMed] [Google Scholar]
  43. Zouali M., Eyquem A. Expression of anti-idiotypic clones against auto-anti-DNA antibodies in normal individuals. Cell Immunol. 1983 Feb 15;76(1):137–147. doi: 10.1016/0008-8749(83)90356-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES