Abstract
In this paper, using polymerase chain reaction (PCR), we demonstrated the occurrence of hybrid genes formed by interlocus recombination between T cell receptor gamma (TCR-gamma) variable (V) regions and TCR- beta joining (J) regions in the peripheral blood lymphocytes (PBL) from normal individuals and patients with ataxia-telangiectasia (AT). Sequence analysis of the PCR-derived hybrid genes confirmed that site- specific V gamma-J beta recombination had occurred and showed that 10 of 23 genomic hybrid genes maintained a correct open reading frame. By dilution analysis, the frequency of these hybrid genes was 8 +/- 1/10(5) cells in normal PBL and 587 +/- 195/10(5) cells in AT PBL. These frequencies and the approximately 70-fold difference between the normal and AT samples are consistent with previous cytogenetic data examining the occurrence of an inversion of chromosome 7 in normal and AT PBL. We also demonstrated expression of these hybrid genes by PCR analysis of first-strand cDNA prepared from both normal and AT PBL. Sequence analysis of the PCR-amplified transcripts showed that, in contrast to the genomic hybrid genes, 19 of 22 expressed genes maintained a correct open reading frame at the V-J junction and correctly spliced the hybrid V-J exon to a TCR-beta constant region, thus allowing translation into a potentially functional hybrid TCR protein. Another type of hybrid TCR transcript was found in a which a rearranged TCR-gamma V-J exon was correctly spliced to a TCR-beta constant region. This form of hybrid gene may be formed by trans- splicing. These hybrid TCR genes may serve to increase the repertoire of the immune response. In addition, studies of their mechanism of formation and its misregulation in AT may provide insight into the nature of the chromosomal instability syndrome associated with AT. The mechanism underlying hybrid gene formation may be analogous to the mechanism underlying rearrangements between putative growth-affecting genes and the antigen receptor loci, which are associated with AT lymphocyte clones and lymphoid malignancies.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aurias A., Dutrillaux B., Buriot D., Lejeune J. High frequencies of inversions and translocations of chromosomes 7 and 14 in ataxia telangiectasia. Mutat Res. 1980 Feb;69(2):369–374. doi: 10.1016/0027-5107(80)90101-3. [DOI] [PubMed] [Google Scholar]
- Becker M. L., Near R., Mudgett-Hunter M., Margolies M. N., Kubo R. T., Kaye J., Hedrick S. M. Expression of a hybrid immunoglobulin-T cell receptor protein in transgenic mice. Cell. 1989 Sep 8;58(5):911–921. doi: 10.1016/0092-8674(89)90943-4. [DOI] [PubMed] [Google Scholar]
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brito-Babapulle V., Pomfret M., Matutes E., Catovsky D. Cytogenetic studies on prolymphocytic leukemia. II. T cell prolymphocytic leukemia. Blood. 1987 Oct;70(4):926–931. [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Davey M. P., Bertness V., Nakahara K., Johnson J. P., McBride O. W., Waldmann T. A., Kirsch I. R. Juxtaposition of the T-cell receptor alpha-chain locus (14q11) and a region (14q32) of potential importance in leukemogenesis by a 14;14 translocation in a patient with T-cell chronic lymphocytic leukemia and ataxia-telangiectasia. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9287–9291. doi: 10.1073/pnas.85.23.9287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goverman J., Gomez S. M., Segesman K. D., Hunkapiller T., Laug W. E., Hood L. Chimeric immunoglobulin-T cell receptor proteins form functional receptors: implications for T cell receptor complex formation and activation. Cell. 1990 Mar 23;60(6):929–939. doi: 10.1016/0092-8674(90)90341-b. [DOI] [PubMed] [Google Scholar]
- Gross G., Waks T., Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10024–10028. doi: 10.1073/pnas.86.24.10024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hecht F., Morgan R., Hecht B. K., Smith S. D. Common region on chromosome 14 in T-cell leukemia and lymphoma. Science. 1984 Dec 21;226(4681):1445–1447. doi: 10.1126/science.6438800. [DOI] [PubMed] [Google Scholar]
- Kojis T. L., Schreck R. R., Gatti R. A., Sparkes R. S. Tissue specificity of chromosomal rearrangements in ataxia-telangiectasia. Hum Genet. 1989 Nov;83(4):347–352. doi: 10.1007/BF00291379. [DOI] [PubMed] [Google Scholar]
- Lacy M. J., McNeil L. K., Roth M. E., Kranz D. M. T-cell receptor delta-chain diversity in peripheral lymphocytes. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1023–1026. doi: 10.1073/pnas.86.3.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence J. B., Singer R. H., Marselle L. M. Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell. 1989 May 5;57(3):493–502. doi: 10.1016/0092-8674(89)90924-0. [DOI] [PubMed] [Google Scholar]
- LeFranc M. P., Forster A., Baer R., Stinson M. A., Rabbitts T. H. Diversity and rearrangement of the human T cell rearranging gamma genes: nine germ-line variable genes belonging to two subgroups. Cell. 1986 Apr 25;45(2):237–246. doi: 10.1016/0092-8674(86)90388-0. [DOI] [PubMed] [Google Scholar]
- McCaw B. K., Hecht F., Harnden D. G., Teplitz R. L. Somatic rearrangement of chromosome 14 in human lymphocytes. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2071–2075. doi: 10.1073/pnas.72.6.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mengle-Gaw L., Albertson D. G., Sherrington P. D., Rabbitts T. H. Analysis of a T-cell tumor-specific breakpoint cluster at human chromosome 14q32. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9171–9175. doi: 10.1073/pnas.85.23.9171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nickerson J. A., Krochmalnic G., Wan K. M., Penman S. Chromatin architecture and nuclear RNA. Proc Natl Acad Sci U S A. 1989 Jan;86(1):177–181. doi: 10.1073/pnas.86.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quertermous T., Strauss W. M., Van Dongen J. J., Seidman J. G. Human T cell gamma chain joining regions and T cell development. J Immunol. 1987 Apr 15;138(8):2687–2690. [PubMed] [Google Scholar]
- Reed K. C., Mann D. A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 1985 Oct 25;13(20):7207–7221. doi: 10.1093/nar/13.20.7207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russo G., Isobe M., Gatti R., Finan J., Batuman O., Huebner K., Nowell P. C., Croce C. M. Molecular analysis of a t(14;14) translocation in leukemic T-cells of an ataxia telangiectasia patient. Proc Natl Acad Sci U S A. 1989 Jan;86(2):602–606. doi: 10.1073/pnas.86.2.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimizu A., Nussenzweig M. C., Mizuta T. R., Leder P., Honjo T. Immunoglobulin double-isotype expression by trans-mRNA in a human immunoglobulin transgenic mouse. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8020–8023. doi: 10.1073/pnas.86.20.8020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Stern M. H., Lipkowitz S., Aurias A., Griscelli C., Thomas G., Kirsch I. R. Inversion of chromosome 7 in ataxia telangiectasia is generated by a rearrangement between T-cell receptor beta and T-cell receptor gamma genes. Blood. 1989 Nov 1;74(6):2076–2080. [PubMed] [Google Scholar]
- Strominger J. L. Developmental biology of T cell receptors. Science. 1989 May 26;244(4907):943–950. doi: 10.1126/science.2658058. [DOI] [PubMed] [Google Scholar]
- Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
- Toyonaga B., Yoshikai Y., Vadasz V., Chin B., Mak T. W. Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8624–8628. doi: 10.1073/pnas.82.24.8624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tycko B., Palmer J. D., Sklar J. T cell receptor gene trans-rearrangements: chimeric gamma-delta genes in normal lymphoid tissues. Science. 1989 Sep 15;245(4923):1242–1246. doi: 10.1126/science.2551037. [DOI] [PubMed] [Google Scholar]
- Waldmann T. A. The arrangement of immunoglobulin and T cell receptor genes in human lymphoproliferative disorders. Adv Immunol. 1987;40:247–321. doi: 10.1016/s0065-2776(08)60241-2. [DOI] [PubMed] [Google Scholar]
- Yancopoulos G. D., Alt F. W. Regulation of the assembly and expression of variable-region genes. Annu Rev Immunol. 1986;4:339–368. doi: 10.1146/annurev.iy.04.040186.002011. [DOI] [PubMed] [Google Scholar]
- Young W. S., 3rd, Mezey E., Siegel R. E. Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci Lett. 1986 Oct 8;70(2):198–203. doi: 10.1016/0304-3940(86)90463-5. [DOI] [PubMed] [Google Scholar]