Abstract
The major characteristics of human atherosclerotic lesions are similar to those of a chronic inflammatory reaction, namely fibrosis, mesenchymal cell proliferation, the presence of resident macrophages, and cell necrosis. Atherosclerosis exhibits in addition the feature of lipid (mainly cholesterol) accumulation. The results of the present report demonstrate that a specific cholesterol-containing lipid particle present in human atherosclerotic lesions activates the complement system to completion. Thus, lipid could represent a stimulatory factor for the inflammatory reaction, whose underlying mechanistic basis may be, at least in part, complement activation. The complement-activating lipid was purified from saline extracts of aortic atherosclerotic lesions by sucrose density gradient centrifugation followed by molecular sieve chromatography on Sepharose 2B. It contained little protein other than albumin, was 100-500 nm in size, exhibited an unesterified to total cholesterol ratio of 0.58 and an unesterified cholesterol to phospholipid ratio of 1.2. The lipid, termed lesion lipid complement (LCA), activated the alternative pathway of complement in a dose-dependent manner. Lesion-extracted low density lipoprotein (LDL) obtained during the purification procedure failed to activate complement. Specific generation of C3a desArg and C5b-9 by LCA indicated C3/C5 convertase formation with activation proceeding to completion. Biochemical and electron microscopic evaluations revealed that much of the C5b-9 present in atherosclerotic lesions is membraneous, rather than fluid phase SC5b-9. The observations reported herein establish a link between lipid insudation and inflammation in atherosclerotic lesions via the mechanism of complement activation.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alving C. R., Richards R. L., Guirguis A. A. Cholesterol-dependent human complement activation resulting in damage to liposomal model membranes. J Immunol. 1977 Jan;118(1):342–347. [PubMed] [Google Scholar]
- Bhakdi S., Fassbender W., Hugo F., Carreno M. P., Berstecher C., Malasit P., Kazatchkine M. D. Relative inefficiency of terminal complement activation. J Immunol. 1988 Nov 1;141(9):3117–3122. [PubMed] [Google Scholar]
- Bhakdi S., Tranum-Jensen J. Terminal membrane C5b-9 complex of human complement: transition from an amphiphilic to a hydrophilic state through binding of the S protein from serum. J Cell Biol. 1982 Sep;94(3):755–759. doi: 10.1083/jcb.94.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv Lipid Res. 1982;19:1–53. doi: 10.1016/b978-0-12-024919-0.50007-2. [DOI] [PubMed] [Google Scholar]
- Cathcart M. K., Morel D. W., Chisolm G. M., 3rd Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol. 1985 Aug;38(2):341–350. doi: 10.1002/jlb.38.2.341. [DOI] [PubMed] [Google Scholar]
- Cheung A. K., Parker C. J., Janatova J. Analysis of the complement C3 fragments associated with hemodialysis membranes. Kidney Int. 1989 Feb;35(2):576–588. doi: 10.1038/ki.1989.26. [DOI] [PubMed] [Google Scholar]
- Fearon D. T., Wong W. W. Complement ligand-receptor interactions that mediate biological responses. Annu Rev Immunol. 1983;1:243–271. doi: 10.1146/annurev.iy.01.040183.001331. [DOI] [PubMed] [Google Scholar]
- Fong L. G., Parthasarathy S., Witztum J. L., Steinberg D. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J Lipid Res. 1987 Dec;28(12):1466–1477. [PubMed] [Google Scholar]
- Guyton J. R., Klemp K. F. The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy. Am J Pathol. 1989 Mar;134(3):705–717. [PMC free article] [PubMed] [Google Scholar]
- Hugo F., Jenne D., Bhakdi S. Monoclonal antibodies against neoantigens of the terminal C5b-9 complex of human complement. Biosci Rep. 1985 Aug;5(8):649–658. doi: 10.1007/BF01116996. [DOI] [PubMed] [Google Scholar]
- Hugo F., Krämer S., Bhakdi S. Sensitive ELISA for quantitating the terminal membrane C5b-9 and fluid-phase SC5b-9 complex of human complement. J Immunol Methods. 1987 May 20;99(2):243–251. doi: 10.1016/0022-1759(87)90134-7. [DOI] [PubMed] [Google Scholar]
- Kruth H. S. Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles. Am J Pathol. 1984 Feb;114(2):201–208. [PMC free article] [PubMed] [Google Scholar]
- Kruth H. S. Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Atherosclerosis. 1985 Nov;57(2-3):337–341. doi: 10.1016/0021-9150(85)90045-0. [DOI] [PubMed] [Google Scholar]
- Lachmann P. J., Pangburn M. K., Oldroyd R. G. Breakdown of C3 after complement activation. Identification of a new fragment C3g, using monoclonal antibodies. J Exp Med. 1982 Jul 1;156(1):205–216. doi: 10.1084/jem.156.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ladbrooke B. D., Williams R. M., Chapman D. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta. 1968 Apr 29;150(3):333–340. doi: 10.1016/0005-2736(68)90132-6. [DOI] [PubMed] [Google Scholar]
- Mora R., Lupu F., Simionescu N. Prelesional events in atherogenesis. Colocalization of apolipoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in the aorta of hyperlipidemic rabbit. Atherosclerosis. 1987 Oct;67(2-3):143–154. doi: 10.1016/0021-9150(87)90274-7. [DOI] [PubMed] [Google Scholar]
- Morel D. W., DiCorleto P. E., Chisolm G. M. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis. 1984 Jul-Aug;4(4):357–364. doi: 10.1161/01.atv.4.4.357. [DOI] [PubMed] [Google Scholar]
- Niculescu F., Rus H. G., Vlaicu R. Immunohistochemical localization of C5b-9, S-protein, C3d and apolipoprotein B in human arterial tissues with atherosclerosis. Atherosclerosis. 1987 May;65(1-2):1–11. doi: 10.1016/0021-9150(87)90002-5. [DOI] [PubMed] [Google Scholar]
- Seifert P. S., Hansson G. K. Complement receptors and regulatory proteins in human atherosclerotic lesions. Arteriosclerosis. 1989 Nov-Dec;9(6):802–811. doi: 10.1161/01.atv.9.6.802. [DOI] [PubMed] [Google Scholar]
- Seifert P. S., Hugo F., Hansson G. K., Bhakdi S. Prelesional complement activation in experimental atherosclerosis. Terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. Lab Invest. 1989 Jun;60(6):747–754. [PubMed] [Google Scholar]
- Seifert P. S., Kazatchkine M. D. Generation of complement anaphylatoxins and C5b-9 by crystalline cholesterol oxidation derivatives depends on hydroxyl group number and position. Mol Immunol. 1987 Dec;24(12):1303–1308. doi: 10.1016/0161-5890(87)90125-8. [DOI] [PubMed] [Google Scholar]
- Simionescu N., Vasile E., Lupu F., Popescu G., Simionescu M. Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol. 1986 Apr;123(1):109–125. [PMC free article] [PubMed] [Google Scholar]
- Small D. M. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis. 1988 Mar-Apr;8(2):103–129. doi: 10.1161/01.atv.8.2.103. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tranum-Jensen J. Electron microscopy: assays involving freeze-fracture and freeze-etching. Methods Enzymol. 1988;165:374–389. doi: 10.1016/s0076-6879(88)65054-3. [DOI] [PubMed] [Google Scholar]
- Tranum-Jensen J. Electron microscopy: assays involving negative staining. Methods Enzymol. 1988;165:357–374. doi: 10.1016/s0076-6879(88)65053-1. [DOI] [PubMed] [Google Scholar]
- Vlaicu R., Niculescu F., Rus H. G., Cristea A. Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis. 1985 Nov;57(2-3):163–177. doi: 10.1016/0021-9150(85)90030-9. [DOI] [PubMed] [Google Scholar]
- Vogt W., von Zabern I., Damerau B., Hesse D., Lühmann B., Nolte R. Mechanisms of complement activation by crystalline cholesterol. Mol Immunol. 1985 Feb;22(2):101–106. doi: 10.1016/s0161-5890(85)80003-1. [DOI] [PubMed] [Google Scholar]
- Ware C. F., Kolb W. P. Assembly of the functional membrane attack complex of human complement: formation of disulfide-linked C9 dimers. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6426–6430. doi: 10.1073/pnas.78.10.6426. [DOI] [PMC free article] [PubMed] [Google Scholar]
