Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Jun 1;165(6):1468–1480. doi: 10.1084/jem.165.6.1468

Alloantigen persistence in induction and maintenance of transplantation tolerance

PMCID: PMC2188352  PMID: 3295107

Abstract

Infusion of parental bone marrow cells into F1 hybrids conditioned by total lymphoid irradiation (TLI) results in chimeras with a high percentage of donor-type cells, and without clinical signs of graft-vs.- host reaction. In these chimeras, a state of tolerance has been shown to be associated with paucity of cytotoxic T lymphocyte percursors (pCTL) reactive with host-type alloantigens. To determine whether the presence of tolerizing alloantigens is essential for maintenance of unresponsiveness, lymphohematopoietic cells obtained from such tolerant chimeras were transferred into supralethally irradiated recipients of two different genotypes: in one case the adoptive recipients were syngeneic with host-type cells, and in the other they were syngeneic with donor-type cells of the original chimeras, thus providing the chimeric cells with a tolerogen-free environment. After "parking" for 4 d in syngeneic donor-type mice, the transferred cells displayed a marked increase in the frequency of pCTL directed against tolerizing alloantigens, whereas a low pCTL frequency directed against the same H- 2 target cells was maintained in allogeneic tolerizing-type adoptive recipients. Multiple injections of adoptive donor-type mice with tolerizing-type cells of the original chimera reestablished a low level of cytotoxic precursors. Cytotoxic activity against unrelated alloantigens was independent of the presence of tolerogen-presenting cells in the adoptively transferred mice. Our experimental model suggests that persistence of cells bearing tolerizing alloantigens is an essential requirement for maintenance of previously established tolerance.

Full Text

The Full Text of this article is available as a PDF (837.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caridis D. T., Liegeois A., Barrett I., Monaco A. P. Enhanced survival of canine renal allografts of ALS- treated dogs given bone marrow. Transplant Proc. 1973 Mar;5(1):671–674. [PubMed] [Google Scholar]
  2. De Fazio S. R., Hartner W. C., Monaco A. P., Gozzo J. J. Mouse skin graft prolongation with donor-strain bone marrow and antilymphocyte serum. Effect of bone marrow cell storage. Transplantation. 1986 Jan;41(1):26–28. doi: 10.1097/00007890-198601000-00004. [DOI] [PubMed] [Google Scholar]
  3. Desquenne-Clark L., Kimura H., Silvers W. K. Evidence that major histocompatibility complex restriction of foreign transplantation antigens occurs when tolerance is induced in neonatal mice and rats. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6265–6267. doi: 10.1073/pnas.82.18.6265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorsch S., Roser B. Suppressor cells in transplantation tolerance. II. Identification and probable mode of action of chimeric suppressor T cells. Transplantation. 1982 May;33(5):525–529. [PubMed] [Google Scholar]
  5. Dorsch S., Roser B. The clonal nature of allo-antigen-sensitive small lymphocytes in the recirculating pool of normal rats. Aust J Exp Biol Med Sci. 1974 Feb;52(1):45–66. doi: 10.1038/icb.1974.4. [DOI] [PubMed] [Google Scholar]
  6. Gassmann W., Wottge H. U., von Kolzynski M., Müller-Ruchholtz W. Immune reactivity after high-dose irradiation. Transplantation. 1986 Mar;41(3):380–384. doi: 10.1097/00007890-198603000-00019. [DOI] [PubMed] [Google Scholar]
  7. Heeg K., Wagner H. Analysis of immunological tolerance to major histocompatibility complex antigens. I. High frequencies of tolerogen-specific cytotoxic T lymphocyte precursors in mice neonatally tolerized to class I major histocompatibility complex antigens. Eur J Immunol. 1985 Jan;15(1):25–30. doi: 10.1002/eji.1830150106. [DOI] [PubMed] [Google Scholar]
  8. Jerne N. K. Idiotypic networks and other preconceived ideas. Immunol Rev. 1984 Jun;79:5–24. doi: 10.1111/j.1600-065x.1984.tb00484.x. [DOI] [PubMed] [Google Scholar]
  9. Korngold R., Bennink J. R., Doherty P. C. Early dominance of irradiated host cells in the responder profiles of thymocytes from P leads to F1 radiation chimeras. J Immunol. 1981 Jul;127(1):124–129. [PubMed] [Google Scholar]
  10. Leshem B., Gotsman B., Kedar E. In vitro elicitation of cytotoxic response against a nonimmunogenic murine tumor by allosensitization. Cancer Immunol Immunother. 1984;17(2):117–123. doi: 10.1007/BF00200047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lubaroff D. M., Silvers W. K. Importance of chimerism in maintaining tolerance of skin allografts in mice. J Immunol. 1973 Jul;111(1):65–71. [PubMed] [Google Scholar]
  12. Lubaroff D. M., Silvers W. K. The abolition of tolerance of skin homografts in rats with isoantiserum. J Immunol. 1970 May;104(5):1236–1241. [PubMed] [Google Scholar]
  13. MacDonald H. R., Cerottini J. C., Ryser J. E., Maryanski J. L., Taswell C., Widmer M. B., Brunner K. T. Quantitation and cloning of cytolytic T lymphocytes and their precursors. Immunol Rev. 1980;51:93–123. doi: 10.1111/j.1600-065x.1980.tb00318.x. [DOI] [PubMed] [Google Scholar]
  14. Maki T., Gottschalk R., Wood M. L., Monaco A. P. Specific unresponsiveness to skin allografts in anti-lymphocyte serum-treated, marrow-injected mice: participation of donor marrow-derived suppressor T cells. J Immunol. 1981 Oct;127(4):1433–1438. [PubMed] [Google Scholar]
  15. Morecki S., Leshem B., Weigensberg M., Bar S., Slavin S. Functional clonal deletion versus active suppression in transplantation tolerance induced by total-lymphoid irradiation. Transplantation. 1985 Aug;40(2):201–210. doi: 10.1097/00007890-198508000-00019. [DOI] [PubMed] [Google Scholar]
  16. Myburgh J. A., Smit J. A., Stark J. H., Browde S. Total lymphoid irradiation in kidney and liver transplantation in the baboon: prolonged graft survival and alterations in T cell subsets with low cumulative dose regimens. J Immunol. 1984 Feb;132(2):1019–1025. [PubMed] [Google Scholar]
  17. Noguchi M., Onoé K., Ogasawara M., Iwabuchi K., Geng L., Ogasawara K., Good R. A., Morikawa K. H-2-incompatible bone marrow chimeras produce donor-H-2-restricted Ly-2 suppressor T-cell factor(s). Proc Natl Acad Sci U S A. 1985 Oct;82(20):7063–7067. doi: 10.1073/pnas.82.20.7063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pierce G. E., Watts L. M. The role of donor lymphoid cells in the transfer of allograft tolerance. Transplantation. 1985 Dec;40(6):702–707. doi: 10.1097/00007890-198512000-00026. [DOI] [PubMed] [Google Scholar]
  19. Ryan J. J., Ahmed A., Kind P. D., Thompson C. B., Berning A. K., Sell K. W. Recognition and response to alloantigens in vivo. I. Negative and positive selection of MLR reactivity in murine peripheral blood lymphocytes to major histocompatibility complex and Mls antigens. J Immunol. 1984 Aug;133(2):606–615. [PubMed] [Google Scholar]
  20. Slavin S., Morecki S., Weigensberg M., Bar S., Weiss L. Functional clonal deletion versus suppressor cell-induced transplantation tolerance in chimeras prepared with a short course of total-lymphoid irradiation. Transplantation. 1986 Jun;41(6):680–687. doi: 10.1097/00007890-198606000-00003. [DOI] [PubMed] [Google Scholar]
  21. Slavin S., Or R., Naparstek E., Cividalli G., Weshler Z., Weiss L., Mumcuoglu M., Engelhard D., Aker M., Pollack A. New approaches for the prevention of rejection and graft-vs.-host disease in clinical bone marrow transplantation. Isr J Med Sci. 1986 Mar-Apr;22(3-4):264–267. [PubMed] [Google Scholar]
  22. Slavin S., Reitz B., Bieber C. P., Kaplan H. S., Strober S. Transplantation tolerance in adult rats using total lymphoid irradiation: permanent survival of skin, heart, and marrow allografts. J Exp Med. 1978 Mar 1;147(3):700–707. doi: 10.1084/jem.147.3.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Slavin S., Strober S., Fuks Z., Kaplan H. S. Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long-term survival of allogeneic bone marrow and skin grafts. J Exp Med. 1977 Jul 1;146(1):34–48. doi: 10.1084/jem.146.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stockinger B. Cytotoxic T-cell precursors revealed in neonatally tolerant mice. Proc Natl Acad Sci U S A. 1984 Jan;81(1):220–223. doi: 10.1073/pnas.81.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thomas J. M., Carver F. M., Foil M. B., Hall W. R., Adams C., Fahrenbruch G. B., Thomas F. T. Renal allograft tolerance induced with ATG and donor bone marrow in outbred rhesus monkeys. Transplantation. 1983 Jul;36(1):104–106. [PubMed] [Google Scholar]
  26. Tutschka P. J., Hess A. D., Beschorner W. E., Santos G. W. Suppressor cells in transplantation tolerance. III. The role of antigen in the maintenance of transplantation tolerance. Transplantation. 1982 May;33(5):510–514. doi: 10.1097/00007890-198205000-00009. [DOI] [PubMed] [Google Scholar]
  27. Wood M. L., Monaco A. P., Gozzo J. J., Liegeois A. Use of homozygous allogeneic bone marrow for induction of tolerance with antilymphocyte serum: dose and timing. Transplant Proc. 1971 Mar;3(1):676–679. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES