Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Jun 1;165(6):1539–1551. doi: 10.1084/jem.165.6.1539

Phenotypic analysis of the inflammatory exudate in murine lymphocytic choriomeningitis

PMCID: PMC2188358  PMID: 3108445

Abstract

The massive inflammation of the cerebrospinal fluid (CSF) which occurs in adult mice injected with lymphocytic choriomeningitis virus (LCMV) has been analyzed by flow microfluorometry (FMF). The great majority of the T cells detected by direct examination of freshly obtained CSF were found to be Lyt-2+, with an almost total absence of L3T4+ lymphocytes. The Lyt-2/L3T4 ratio of lymphocytes in blood was within normal limits. Predominance of the Lyt-2+ subset was confirmed by culturing the CSF cells after mitogenic stimulation. In addition, the T lymphocytes in CSF of cyclophosphamide-suppressed, virus-infected recipients that had been injected 4 d previously with LCMV-immune spleen cells were almost entirely donor Lyt-2+ cells, while the nonlymphoid elements were exclusively of host origin. However this pattern of donor and host T cell distribution was reversed when the LCMV-infected recipients were not immunosuppressed. The frequency of LCMV-specific CTL precursors in CSF taken immediately before the development of symptoms was as low as 1:3,000 cells. Thus most of the T lymphocytes extravasating into the CSF of mice with LCM are passive participants recruited as a consequence of the function of relatively few LCMV-specific effector T cells. The dominance of the Lyt-2+ T cell subset in the CSF of mice with LCM is intriguing.

Full Text

The Full Text of this article is available as a PDF (757.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan J. E., Doherty P. C. Consequences of cyclophosphamide treatment in murine lymphocytic choriomeningitis: evidence for cytotoxic T cell replication in vivo. Scand J Immunol. 1985 Oct;22(4):367–374. doi: 10.1111/j.1365-3083.1985.tb01894.x. [DOI] [PubMed] [Google Scholar]
  2. Allan J. E., Doherty P. C. Natural killer cells contribute to inflammation but do not appear to be essential for the induction of clinical lymphocytic choriomeningitis. Scand J Immunol. 1986 Aug;24(2):153–162. doi: 10.1111/j.1365-3083.1986.tb02081.x. [DOI] [PubMed] [Google Scholar]
  3. Baenziger J., Hengartner H., Zinkernagel R. M., Cole G. A. Induction or prevention of immunopathological disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus. Eur J Immunol. 1986 Apr;16(4):387–393. doi: 10.1002/eji.1830160413. [DOI] [PubMed] [Google Scholar]
  4. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  5. Ceredig R., Glasebrook A. L., MacDonald H. R. Phenotypic and functional properties of murine thymocytes. I. Precursors of cytolytic T lymphocytes and interleukin 2-producing cells are all contained within a subpopulation of "mature" thymocytes as analyzed by monoclonal antibodies and flow microfluorometry. J Exp Med. 1982 Feb 1;155(2):358–379. doi: 10.1084/jem.155.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cerottini J. C., Engers H. D., Macdonald H. R., Brunner T. Generation of cytotoxic T lymphocytes in vitro. I. Response of normal and immune mouse spleen cells in mixed leukocyte cultures. J Exp Med. 1974 Sep 1;140(3):703–717. doi: 10.1084/jem.140.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole G. A., Nathanson N., Prendergast R. A. Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972 Aug 11;238(5363):335–337. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
  8. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  9. Doherty P. C., Allan J. E. Differential effect of hybrid resistance on the localization of virus-immune effector T cells to spleen and brain. Immunogenetics. 1986;24(6):409–415. doi: 10.1007/BF00377960. [DOI] [PubMed] [Google Scholar]
  10. Doherty P. C., Allan J. E. Role of the major histocompatibility complex in targeting effector T cells into a site of virus infection. Eur J Immunol. 1986 Oct;16(10):1237–1242. doi: 10.1002/eji.1830161009. [DOI] [PubMed] [Google Scholar]
  11. Doherty P. C., Bowern N. A., Dixon J. E., Allan J. E. Characteristics of the inflammatory process in murine lymphocytic choriomeningitis. Med Microbiol Immunol. 1986;175(2-3):193–195. doi: 10.1007/BF02122449. [DOI] [PubMed] [Google Scholar]
  12. Doherty P. C., Dunlop M. B., Parish C. R., Zinkernagel R. M. Inflammatory process in murine lymphocytic choriomeningitis is maximal in H-2K or H-2D compatible interactions. J Immunol. 1976 Jul;117(1):187–190. [PubMed] [Google Scholar]
  13. Doherty P. C., Gerhard W. Breakdown of the blood--cerebrospinal fluid barrier to immunoglobulin in mice injected intracerebrally with a neurotropic influenza A virus. Post-exposure treatment with monoclonal antibody promotes recovery. J Neuroimmunol. 1981 Sep;1(3):227–237. doi: 10.1016/0165-5728(81)90027-8. [DOI] [PubMed] [Google Scholar]
  14. Doherty P. C., Korngold R. Characteristics of poxvirus-induced meningitis: virus-specific and non-specific cytotoxic effectors in the inflammatory exudate. Scand J Immunol. 1983 Jul;18(1):1–7. doi: 10.1111/j.1365-3083.1983.tb00828.x. [DOI] [PubMed] [Google Scholar]
  15. Doherty P. C., Zinkernagel R. M. T-cell-mediated immunopathology in viral infections. Transplant Rev. 1974;19(0):89–120. doi: 10.1111/j.1600-065x.1974.tb00129.x. [DOI] [PubMed] [Google Scholar]
  16. Erard F., Nabholz M., Dupuy-D'Angeac A., MacDonald H. R. Differential requirements for the induction of interleukin 2 responsiveness in L3T4+ and Lyt-2+ T cell subsets. J Exp Med. 1985 Nov 1;162(5):1738–1743. doi: 10.1084/jem.162.5.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hurwitz J. L., Korngold R., Doherty P. C. Specific and nonspecific T-cell recruitment in viral meningitis: possible implications for autoimmunity. Cell Immunol. 1983 Mar;76(2):397–401. doi: 10.1016/0008-8749(83)90383-0. [DOI] [PubMed] [Google Scholar]
  18. Jefferies W. A., Green J. R., Williams A. F. Authentic T helper CD4 (W3/25) antigen on rat peritoneal macrophages. J Exp Med. 1985 Jul 1;162(1):117–127. doi: 10.1084/jem.162.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Korngold R., Doherty P. C. The localized primary cytotoxic T-cell response to cells expressing minor histocompatibility differences. Scand J Immunol. 1984 Feb;19(2):175–180. doi: 10.1111/j.1365-3083.1984.tb00914.x. [DOI] [PubMed] [Google Scholar]
  20. Marshak-Rothstein A., Fink P., Gridley T., Raulet D. H., Bevan M. J., Gefter M. L. Properties and applications of monoclonal antibodies directed against determinants of the Thy-1 locus. J Immunol. 1979 Jun;122(6):2491–2497. [PubMed] [Google Scholar]
  21. Owen J. A., Allouche M., Doherty P. C. Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. Cell Immunol. 1982 Feb;67(1):49–59. doi: 10.1016/0008-8749(82)90198-8. [DOI] [PubMed] [Google Scholar]
  22. Perry V. H., Hume D. A., Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985 Jun;15(2):313–326. doi: 10.1016/0306-4522(85)90215-5. [DOI] [PubMed] [Google Scholar]
  23. Pettinelli C. B., McFarlin D. E. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. J Immunol. 1981 Oct;127(4):1420–1423. [PubMed] [Google Scholar]
  24. Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
  25. Swain S. L. T cell subsets and the recognition of MHC class. Immunol Rev. 1983;74:129–142. doi: 10.1111/j.1600-065x.1983.tb01087.x. [DOI] [PubMed] [Google Scholar]
  26. Trowbridge I. S., Lesley J., Schulte R., Hyman R., Trotter J. Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics. 1982 Mar;15(3):299–312. doi: 10.1007/BF00364338. [DOI] [PubMed] [Google Scholar]
  27. Wood G. S., Warner N. L., Warnke R. A. Anti-Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J Immunol. 1983 Jul;131(1):212–216. [PubMed] [Google Scholar]
  28. Zamvil S. S., Nelson P. A., Mitchell D. J., Knobler R. L., Fritz R. B., Steinman L. Encephalitogenic T cell clones specific for myelin basic protein. An unusual bias in antigen recognition. J Exp Med. 1985 Dec 1;162(6):2107–2124. doi: 10.1084/jem.162.6.2107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zinkernagel R. M., Doherty P. C. Cortisone-resistant effector T cells in acute lymphocytic choriomeningitis and Listeria monocytogenes infection of mice. Aust J Exp Biol Med Sci. 1975 Aug;53(4):297–303. doi: 10.1038/icb.1975.32. [DOI] [PubMed] [Google Scholar]
  30. Zinkernagel R. M., Doherty P. C. Cytotoxic thymus-derived lymphocytes in cerebrospinal fluid of mice with lymphocytic choriomeningitis. J Exp Med. 1973 Nov 1;138(5):1266–1269. doi: 10.1084/jem.138.5.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES