Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Jun 1;165(6):1639–1654. doi: 10.1084/jem.165.6.1639

Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse

PMCID: PMC2188363  PMID: 3585250

Abstract

Genetic analysis of the development of diabetes and insulitis has been performed in the nonobese diabetic (NOD) mouse strain, a model of insulin-dependent (type I) diabetes mellitus. (NOD X C57BL/10)F1, F2, and (F1 X NOD) first-, second-, and third-backcross generations were studied. The data obtained were consistent with the hypothesis that diabetes is controlled by at least three functionally recessive diabetogenic genes, or gene complexes, one of which is linked to the MHC of the NOD. In contrast, pancreatic inflammation leading to insulitis was found to be controlled by a single incompletely dominant gene. One of the two diabetogenic loci that is not linked to the MHC appears to be essential for the development of severe insulitis. This diabetogenic gene may be identical to the gene that controls the initiation of the autoimmune response that progresses to insulitis. Although this gene appears to be functionally recessive in its control of diabetes, it is incompletely dominant in its control of insulitis. The MHC-linked diabetogenic gene, although not required for the development of insulitis, apparently influences the progression of the autoimmune response since NOD MHC homozygotes in the backcross generations displayed the highest incidence and most severe cases of insulitis. Interestingly, we have found two MHC heterozygous backcross females that have become diabetic, suggesting that either the MHC- linked diabetogenic gene is not strictly recessive or that a recombination event has occurred between the diabetogenic gene and the K or I-A regions of the MHC. The third diabetogenic locus appears to influence the progression of severe insulitis to overt diabetes. In animals homozygous at this locus, diabetes may result from a decreased ability to develop a protective suppressor response to the autoimmune process.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adorini L., Harvey M. A., Miller A., Sercarz E. E. Fine specificity of regulatory T cells. II. Suppressor and helper T cells are induced by different regions of hen egg-white lysozyme in a genetically nonresponder mouse strain. J Exp Med. 1979 Aug 1;150(2):293–306. doi: 10.1084/jem.150.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benacerraf B., Germain R. N. The immune response genes of the major histocompatibility complex. Immunol Rev. 1978;38:70–119. doi: 10.1111/j.1600-065x.1978.tb00385.x. [DOI] [PubMed] [Google Scholar]
  3. Cohen-Haguenauer O., Robbins E., Massart C., Busson M., Deschamps I., Hors J., Lalouel J. M., Dausset J., Cohen D. A systematic study of HLA class II-beta DNA restriction fragments in insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1985 May;82(10):3335–3339. doi: 10.1073/pnas.82.10.3335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colle E., Guttmann R. D., Seemayer T. Spontaneous diabetes mellitus syndrome in the rat. I. Association with the major histocompatibility complex. J Exp Med. 1981 Oct 1;154(4):1237–1242. doi: 10.1084/jem.154.4.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foulis A. K., Liddle C. N., Farquharson M. A., Richmond J. A., Weir R. S. The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia. 1986 May;29(5):267–274. doi: 10.1007/BF00452061. [DOI] [PubMed] [Google Scholar]
  6. Harada M., Makino S. Promotion of spontaneous diabetes in non-obese diabetes-prone mice by cyclophosphamide. Diabetologia. 1984 Dec;27(6):604–606. doi: 10.1007/BF00276978. [DOI] [PubMed] [Google Scholar]
  7. Hattori M., Buse J. B., Jackson R. A., Glimcher L., Dorf M. E., Minami M., Makino S., Moriwaki K., Kuzuya H., Imura H. The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. Science. 1986 Feb 14;231(4739):733–735. doi: 10.1126/science.3003909. [DOI] [PubMed] [Google Scholar]
  8. Jackson R. A., Buse J. B., Rifai R., Pelletier D., Milford E. L., Carpenter C. B., Eisenbarth G. S., Williams R. M. Two genes required for diabetes in BB rats. Evidence from cyclical intercrosses and backcrosses. J Exp Med. 1984 Jun 1;159(6):1629–1636. doi: 10.1084/jem.159.6.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jackson R., Rassi N., Crump T., Haynes B., Eisenbarth G. S. The BB diabetic rat. Profound T-cell lymphocytopenia. Diabetes. 1981 Oct;30(10):887–889. doi: 10.2337/diab.30.10.887. [DOI] [PubMed] [Google Scholar]
  10. Kanazawa Y., Komeda K., Sato S., Mori S., Akanuma K., Takaku F. Non-obese-diabetic mice: immune mechanisms of pancreatic beta-cell destruction. Diabetologia. 1984 Jul;27 (Suppl):113–115. doi: 10.1007/BF00275663. [DOI] [PubMed] [Google Scholar]
  11. Kataoka S., Satoh J., Fujiya H., Toyota T., Suzuki R., Itoh K., Kumagai K. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes. 1983 Mar;32(3):247–253. doi: 10.2337/diab.32.3.247. [DOI] [PubMed] [Google Scholar]
  12. Koevary S., Rossini A., Stoller W., Chick W., Williams R. M. Passive transfer of diabetes in the BB/W rat. Science. 1983 May 13;220(4598):727–728. doi: 10.1126/science.6836309. [DOI] [PubMed] [Google Scholar]
  13. Korman A. J., Boss J. M., Spies T., Sorrentino R., Okada K., Strominger J. L. Genetic complexity and expression of human class II histocompatibility antigens. Immunol Rev. 1985 Jul;85:45–86. doi: 10.1111/j.1600-065x.1985.tb01130.x. [DOI] [PubMed] [Google Scholar]
  14. Krzych U., Thurman G. B., Goldstein A. L., Bressler J. P., Strausser H. R. Sex-related immunocompetence of BALB/c mice. I. Study of immunologic responsiveness of neonatal, weanling, and young adult mice. J Immunol. 1979 Dec;123(6):2568–2574. [PubMed] [Google Scholar]
  15. Like A. A., Anthony M., Guberski D. L., Rossini A. A. Spontaneous diabetes mellitus in the BB/W rat. Effects of glucocorticoids, cyclosporin-A, and antiserum to rat lymphocytes. Diabetes. 1983 Apr;32(4):326–330. doi: 10.2337/diab.32.4.326. [DOI] [PubMed] [Google Scholar]
  16. Like A. A., Guberski D. L., Butler L. Diabetic BioBreeding/Worcester (BB/Wor) rats need not be lymphopenic. J Immunol. 1986 May 1;136(9):3254–3258. [PubMed] [Google Scholar]
  17. Like A. A., Weringer E. J., Holdash A., McGill P., Atkinson D., Rossini A. A. Adoptive transfer of autoimmune diabetes mellitus in biobreeding/Worcester (BB/W) inbred and hybrid rats. J Immunol. 1985 Mar;134(3):1583–1587. [PubMed] [Google Scholar]
  18. Makino S., Kunimoto K., Muraoka Y., Katagiri K. Effect of castration on the appearance of diabetes in NOD mouse. Jikken Dobutsu. 1981 Apr;30(2):137–140. doi: 10.1538/expanim1978.30.2_137. [DOI] [PubMed] [Google Scholar]
  19. Makino S., Kunimoto K., Muraoka Y., Mizushima Y., Katagiri K., Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980 Jan;29(1):1–13. doi: 10.1538/expanim1978.29.1_1. [DOI] [PubMed] [Google Scholar]
  20. Maruyama T., Takei I., Taniyama M., Kataoka K., Matsuki S. Immunological aspect of non-obese diabetic mice: immune islet cell-killing mechanism and cell-mediated immunity. Diabetologia. 1984 Jul;27 (Suppl):121–123. doi: 10.1007/BF00275666. [DOI] [PubMed] [Google Scholar]
  21. Mathis D. J., Benoist C., Williams V. E., 2nd, Kanter M., McDevitt H. O. Several mechanisms can account for defective E alpha gene expression in different mouse haplotypes. Proc Natl Acad Sci U S A. 1983 Jan;80(1):273–277. doi: 10.1073/pnas.80.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nakhooda A. F., Like A. A., Chappel C. I., Murray F. T., Marliss E. B. The spontaneously diabetic Wistar rat. Metabolic and morphologic studies. Diabetes. 1977 Feb;26(2):100–112. doi: 10.2337/diab.26.2.100. [DOI] [PubMed] [Google Scholar]
  23. Nepom B. S., Palmer J., Kim S. J., Hansen J. A., Holbeck S. L., Nepom G. T. Specific genomic markers for the HLA-DQ subregion discriminate between DR4+ insulin-dependent diabetes mellitus and DR4+ seropositive juvenile rheumatoid arthritis. J Exp Med. 1986 Jul 1;164(1):345–350. doi: 10.1084/jem.164.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–120. doi: 10.1007/978-3-642-67448-8_18. [DOI] [PubMed] [Google Scholar]
  25. Owerbach D., Hägglöf B., Lernmark A., Holmgren G. Susceptibility to insulin-dependent diabetes defined by restriction enzyme polymorphism of HLA-D region genomic DNA. Diabetes. 1984 Oct;33(10):958–965. doi: 10.2337/diab.33.10.958. [DOI] [PubMed] [Google Scholar]
  26. Ozato K., Mayer N. M., Sachs D. H. Monoclonal antibodies to mouse major histocompatibility complex antigens. Transplantation. 1982 Sep;34(3):113–120. doi: 10.1097/00007890-198209000-00001. [DOI] [PubMed] [Google Scholar]
  27. Sadegh-Nasseri S., Dessi V., Sercarz E. E. Selective reversal of H-2-linked genetic unresponsiveness to lysozymes. II. Alteration in the T helper/T suppressor balance, owing to gene(s) linked to Ir-2, leads to responsiveness in BALB.B. Eur J Immunol. 1986 May;16(5):486–492. doi: 10.1002/eji.1830160504. [DOI] [PubMed] [Google Scholar]
  28. Sadegh-Nasseri S., Kipp D. E., Taylor B. A., Miller A., Sercarz E. Selective reversal of H-2 linked genetic unresponsiveness to lysozymes. I. Non-H-2 gene(s) closely linked to the Ir-2 locus on chromosome 2 permit(s) an antilysozyme response in H-2b mice. Immunogenetics. 1984;20(5):535–546. doi: 10.1007/BF00364356. [DOI] [PubMed] [Google Scholar]
  29. Seemayer T. A., Colle E. Pancreatic cellular infiltrates in autoimmune-prone New Zealand Black mice. Diabetologia. 1984 Apr;26(4):310–313. doi: 10.1007/BF00283656. [DOI] [PubMed] [Google Scholar]
  30. Seemayer T. A., Oligny L. L., Tannenbaum G. S., Goldman H., Colle E. Animal model of human disease. Diabetes mellitus. Am J Pathol. 1980 Nov;101(2):485–488. [PMC free article] [PubMed] [Google Scholar]
  31. Sheehy M. J., Rowe J. R., Fuller T. C., Yunis E. J., Gabbay K. H. A minor subset of HLA-DR3 haplotypes is preferentially increased in type 1 (insulin-dependent) diabetes. Diabetologia. 1985 Dec;28(12):891–894. doi: 10.1007/BF00703131. [DOI] [PubMed] [Google Scholar]
  32. Sheehy M. J., Rowe J. R., MacDonald M. J. A particular subset of HLA-DR4 accounts for all or most of the DR4 association in type I diabetes. Diabetes. 1985 Sep;34(9):942–944. doi: 10.2337/diab.34.9.942. [DOI] [PubMed] [Google Scholar]
  33. Silver J., Swain S. L., Hubert J. J. Small subunit of I-A subregion antigens determines the allospecificity recognized by a monoclonal antibody. Nature. 1980 Jul 17;286(5770):272–274. doi: 10.1038/286272a0. [DOI] [PubMed] [Google Scholar]
  34. Talal N., Steinberg A. D. The pathogenesis of autoimmunity in New Zealand black mice. Curr Top Microbiol Immunol. 1974;64(0):79–103. doi: 10.1007/978-3-642-65848-8_3. [DOI] [PubMed] [Google Scholar]
  35. Wicker L. S., Miller B. J., Mullen Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes. 1986 Aug;35(8):855–860. doi: 10.2337/diab.35.8.855. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES