Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Sep 1;164(3):777–793. doi: 10.1084/jem.164.3.777

Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum

PMCID: PMC2188379  PMID: 2427635

Abstract

This report describes the purification of an acute phase reactant from acute phase rabbit serum, which endows normal serum with the properties of acute phase serum, insofar as LPS is concerned. The acute phase reactant is referred to as LPS-binding protein, or LBP. LBP was purified approximately 2,000-fold by chromatography of acute phase serum on Bio-Rex 70 and Mono-Q resins. The resulting preparation consisted of two glycoproteins having molecular weights of 60,500 and 58,000; the two were obtained in a variable ratio, usually near 10:1, respectively. After separation by SDS-PAGE, the N-terminal 36 amino acid sequences of the two proteins were identical. From the N-terminal sequence, as well as other properties of LBP, LBP appears to be unrelated to any known acute phase reactants. The direct interaction of LPS and LBP was inferred from two types of evidence: first, immunoprecipitation of [3H]LPS from APRS by anti-LBP sera; and second, by the 125I-labeling of LBP when APRS-containing 125I-labeled 2-(p- azidosalicylamido)ethyl 1,3'-dithiopropionyl-LPS was photolysed. The data presented here support the concept that the 60-kD glycoprotein we have termed LBP is a newly recognized acute phase reactant that may modulate the biochemical and biologic properties of LPS in vivo.

Full Text

The Full Text of this article is available as a PDF (992.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CYNKIN M. A., ASHWELL G. Estimation of 3-deoxy sugars by means of the malonaldehyde-thiobarbituric acid reaction. Nature. 1960 Apr 9;186:155–156. doi: 10.1038/186155a0. [DOI] [PubMed] [Google Scholar]
  2. Chandra T., Stackhouse R., Kidd V. J., Robson K. J., Woo S. L. Sequence homology between human alpha 1-antichymotrypsin, alpha 1-antitrypsin, and antithrombin III. Biochemistry. 1983 Oct 25;22(22):5055–5061. doi: 10.1021/bi00291a001. [DOI] [PubMed] [Google Scholar]
  3. Dente L., Ciliberto G., Cortese R. Structure of the human alpha 1-acid glycoprotein gene: sequence homology with other human acute phase protein genes. Nucleic Acids Res. 1985 Jun 11;13(11):3941–3952. doi: 10.1093/nar/13.11.3941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dowton S. B., Woods D. E., Mantzouranis E. C., Colten H. R. Syrian hamster female protein: analysis of female protein primary structure and gene expression. Science. 1985 Jun 7;228(4704):1206–1208. doi: 10.1126/science.2408337. [DOI] [PubMed] [Google Scholar]
  5. Filkins J. P. Blood endotoxin inactivation after trauma and endotoxicosis. Proc Soc Exp Biol Med. 1976 Jan;151(1):89–92. doi: 10.3181/00379727-151-39149. [DOI] [PubMed] [Google Scholar]
  6. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  7. Ginsberg M. H., Morrison D. C. The selective binding of aggregated IgG to lipid A-rich bacterial lipopolysaccharides. J Immunol. 1978 Jan;120(1):317–319. [PubMed] [Google Scholar]
  8. Greisman S. E., DuBuy B. Mechanisms of endotoxin tolerance. IX. Effect of exchange transfusion. Proc Soc Exp Biol Med. 1975 Mar;148(3):675–678. doi: 10.3181/00379727-148-38608. [DOI] [PubMed] [Google Scholar]
  9. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  10. Holland J. P., Labieniec L., Swimmer C., Holland M. J. Homologous nucleotide sequences at the 5' termini of messenger RNAs synthesized from the yeast enolase and glyceraldehyde-3-phosphate dehydrogenase gene families. The primary structure of a third yeast glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem. 1983 Apr 25;258(8):5291–5299. [PubMed] [Google Scholar]
  11. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  12. Krystal M., Young J. F., Palese P., Wilson I. A., Skehel J. J., Wiley D. C. Sequential mutations in hemagglutinins of influenza B virus isolates: definition of antigenic domains. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4527–4531. doi: 10.1073/pnas.80.14.4527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Mantzouranis E. C., Dowton S. B., Whitehead A. S., Edge M. D., Bruns G. A., Colten H. R. Human serum amyloid P component. cDNA isolation, complete sequence of pre-serum amyloid P component, and localization of the gene to chromosome 1. J Biol Chem. 1985 Jun 25;260(12):7752–7756. [PubMed] [Google Scholar]
  15. Mathison J. C., Ulevitch R. J. The clearance, tissue distribution, and cellular localization of intravenously injected lipopolysaccharide in rabbits. J Immunol. 1979 Nov;123(5):2133–2143. [PubMed] [Google Scholar]
  16. Sipe J. D., Colten H. R., Goldberger G., Edge M. D., Tack B. F., Cohen A. S., Whitehead A. S. Human serum amyloid A (SAA): biosynthesis and postsynthetic processing of preSAA and structural variants defined by complementary DNA. Biochemistry. 1985 Jun 4;24(12):2931–2936. doi: 10.1021/bi00333a018. [DOI] [PubMed] [Google Scholar]
  17. Tobias P. S., McAdam K. P., Soldau K., Ulevitch R. J. Control of lipopolysaccharide-high-density lipoprotein interactions by an acute-phase reactant in human serum. Infect Immun. 1985 Oct;50(1):73–76. doi: 10.1128/iai.50.1.73-76.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tobias P. S., McAdam K. P., Ulevitch R. J. Interactions of bacterial lipopolysaccharide with acute-phase rabbit serum and isolation of two forms of rabbit serum amyloid A. J Immunol. 1982 Mar;128(3):1420–1427. [PubMed] [Google Scholar]
  19. Tobias P. S., Ulevitch R. J. Control of lipopolysaccharide-high density lipoprotein binding by acute phase protein(s). J Immunol. 1983 Oct;131(4):1913–1916. [PubMed] [Google Scholar]
  20. Ulevitch R. J., Johnston A. R. The modification of biophysical and endotoxic properties of bacterial lipopolysaccharides by serum. J Clin Invest. 1978 Dec;62(6):1313–1324. doi: 10.1172/JCI109252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ulevitch R. J., Johnston A. R., Weinstein D. B. New function for high density lipoproteins. Isolation and characterization of a bacterial lipopolysaccharide-high density lipoprotein complex formed in rabbit plasma. J Clin Invest. 1981 Mar;67(3):827–837. doi: 10.1172/JCI110100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ulevitch R. J., Johnston A. R., Weinstein D. B. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest. 1979 Nov;64(5):1516–1524. doi: 10.1172/JCI109610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ulevitch R. J. The preparation and characterization of a radioiodinated bacterial lipopolysaccharide. Immunochemistry. 1978 Mar;15(3):157–164. doi: 10.1016/0161-5890(78)90144-x. [DOI] [PubMed] [Google Scholar]
  24. Wang C. M., Nguyen N. Y., Yonaha K., Robey F., Liu T. Y. Primary structure of rabbit C-reactive protein. J Biol Chem. 1982 Nov 25;257(22):13610–13615. [PubMed] [Google Scholar]
  25. Wollenweber H. W., Morrison D. C. Synthesis and biochemical characterization of a photoactivatable, iodinatable, cleavable bacterial lipopolysaccharide derivative. J Biol Chem. 1985 Dec 5;260(28):15068–15074. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES