Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Sep 1;164(3):826–840. doi: 10.1084/jem.164.3.826

Human neutrophil plasminogen activator is localized in specific granules and is translocated to the cell surface by exocytosis

PMCID: PMC2188397  PMID: 3746200

Abstract

The subcellular localization of plasminogen activator (PA) in human neutrophils was studied. The cells were disrupted by nitrogen cavitation and fractionated on Percoll density gradients into three major components containing the plasma membranes, the specific granules, and the azurophilic granules. The biochemical markers we used to identify these organelles were alkaline phosphatase, vitamin B12- binding protein, and beta-glucuronidase, respectively. Using the radioactive fibrin plate method, PA activity and plasminogen- independent fibrinolytic activity were measured. In resting neutrophils, PA was associated mainly with the membranes of the specific granules. In five individual experiments the activity of this fraction varied from 79 to 100% of the total; the remaining activity was found to be associated with the plasma membrane, and no activity was present in the azurophilic granules. In neutrophils that were activated by exposure to PMA (20 ng/ml for 15 min at 37 degrees C), the total recoverable PA activity remained unchanged; however, the main peak of activity (85% of total) shifted from the specific granules to the plasma membranes. The magnitude of the reduction of the enzyme in the specific granules paralleled that of vitamin B12-binding protein. PMA-activated, intact neutrophils had approximately 12-fold more surface-bound PA activity than resting cells. Recovery of PA activity from neutrophils was critically dependent on pretreatment of the intact cells with DFP before cavitation; 100-fold more PA activity was detected in DFP-pretreated cells. At the same time, this pretreatment reduced the plasminogen-independent fibrinolytic activity by approximately sevenfold. We determined that PA present in the neutrophils is of the urokinase (UK) type and that the enzyme is produced and stored as a pro-UK, a form insensitive to DFP inhibition. The reduction in the level of proteases (measured as fibrinolytic activity) and the resistance of pro-UK to DFP are most likely the two major reasons for the greatly improved recovery of PA from the DFP- pretreated cells. These findings show that in resting neutrophils PA is stored in the specific granules, and that during activation, it translocates to the outer surface of the plasma membranes, thus equipping the cell with an ecto-proteolytic potential.

Full Text

The Full Text of this article is available as a PDF (939.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreasen P. A., Nielsen L. S., Grøndahl-Hansen J., Skriver L., Zeuthen J., Stephens R. W., Danø K. Inactive proenzyme to tissue-type plasminogen activator from human melanoma cells, identified after affinity purification with a monoclonal antibody. EMBO J. 1984 Jan;3(1):51–56. doi: 10.1002/j.1460-2075.1984.tb01760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borregaard N., Heiple J. M., Simons E. R., Clark R. A. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol. 1983 Jul;97(1):52–61. doi: 10.1083/jcb.97.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brittinger G., Hirschhorn R., Douglas S. D., Weissmann G. Studies on lysosomes. XI. Characterization of a hydrolase-rich fraction from human lymphocytes. J Cell Biol. 1968 May;37(2):394–411. doi: 10.1083/jcb.37.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman H. A., Jr, Stone O. L., Vavrin Z. Degradation of fibrin and elastin by intact human alveolar macrophages in vitro. Characterization of a plasminogen activator and its role in matrix degradation. J Clin Invest. 1984 Mar;73(3):806–815. doi: 10.1172/JCI111275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chapman H. A., Jr, Vavrin Z., Hibbs J. B., Jr Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Cell. 1982 Mar;28(3):653–662. doi: 10.1016/0092-8674(82)90220-3. [DOI] [PubMed] [Google Scholar]
  6. DeChatelet L. R., Cooper M. R. A modified procedure for the determination of leukocyte alkaline phosphatase. Biochem Med. 1970 Aug;4(1):61–68. doi: 10.1016/0006-2944(70)90103-1. [DOI] [PubMed] [Google Scholar]
  7. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  8. Dewald B., Bretz U., Baggiolini M. Release of gelatinase from a novel secretory compartment of human neutrophils. J Clin Invest. 1982 Sep;70(3):518–525. doi: 10.1172/JCI110643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dvorak H. F., Orenstein N. S., Dvorak A. M., Hammond M. E., Roblin R. O., Feder J., Schott C. F., Goodwin J., Morgan E. Isolation of the cytoplasmic granules of guinea pig basophilic leukocytes: identification of esterase and protease activities. J Immunol. 1977 Jul;119(1):38–46. [PubMed] [Google Scholar]
  10. Eaton D. L., Scott R. W., Baker J. B. Purification of human fibroblast urokinase proenzyme and analysis of its regulation by proteases and protease nexin. J Biol Chem. 1984 May 25;259(10):6241–6247. [PubMed] [Google Scholar]
  11. Estensen R. D., White J. G., Holmes B. Specific degranulation of human polymorphonuclear leukocytes. Nature. 1974 Mar 22;248(446):347–348. doi: 10.1038/248347a0. [DOI] [PubMed] [Google Scholar]
  12. Fulton R. J., Hart D. A. Characterization of a plasma membrane-associated plasminogen activator on thymocytes. Biochim Biophys Acta. 1981 Apr 6;642(2):345–364. doi: 10.1016/0005-2736(81)90451-x. [DOI] [PubMed] [Google Scholar]
  13. GOTTLIEBLAU K. S., WASSERMAN L. R., HERBERT V. RAPID CHARCOAL ASSAY FOR INTRINSIC FACTOR (IF), GASTRIC JUICE UNSATURATED B12 BINDING CAPACITY, ANTIBODY TO IF, AND SERUM UNSATURATED B12 BINDING CAPACITY. Blood. 1965 Jun;25:875–884. [PubMed] [Google Scholar]
  14. Granelli-Piperno A., Reich E. A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med. 1978 Jul 1;148(1):223–234. doi: 10.1084/jem.148.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Granelli-Piperno A., Vassalli J. D., Reich E. Secretion of plasminogen activator by human polymorphonuclear leukocytes. Modulation by glucocorticoids and other effectors. J Exp Med. 1977 Dec 1;146(6):1693–1706. doi: 10.1084/jem.146.6.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gurewich V., Pannell R., Louie S., Kelley P., Suddith R. L., Greenlee R. Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (pro-urokinase). A study in vitro and in two animal species. J Clin Invest. 1984 Jun;73(6):1731–1739. doi: 10.1172/JCI111381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laug W. E., Dewald B., Schnyder J., Baggiolini M. Subcellular distribution of plasminogen activator in cultured human fibrosarcoma cells. Cancer Res. 1983 Jan;43(1):22–27. [PubMed] [Google Scholar]
  19. Lemaire G., Drapier J. C., Petit J. F. Importance, localization and functional properties of the cell-associated form of plasminogen activator in mouse peritoneal macrophages. Biochim Biophys Acta. 1983 Feb 22;755(3):332–343. doi: 10.1016/0304-4165(83)90235-0. [DOI] [PubMed] [Google Scholar]
  20. Lijnen H. R., Zamarron C., Blaber M., Winkler M. E., Collen D. Activation of plasminogen by pro-urokinase. I. Mechanism. J Biol Chem. 1986 Jan 25;261(3):1253–1258. [PubMed] [Google Scholar]
  21. Nielsen L. S., Hansen J. G., Skriver L., Wilson E. L., Kaltoft K., Zeuthen J., Danø K. Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody. Biochemistry. 1982 Dec 7;21(25):6410–6415. doi: 10.1021/bi00268a014. [DOI] [PubMed] [Google Scholar]
  22. Ohlsson K., Olsson I. The neutral proteases of human granulocytes. Isolation and partial characterization of granulocyte elastases. Eur J Biochem. 1974 Mar 1;42(2):519–527. doi: 10.1111/j.1432-1033.1974.tb03367.x. [DOI] [PubMed] [Google Scholar]
  23. Ohlsson K., Olsson I. The neutral proteases of human granulocytes. Isolation and partial characterization of two granulocyte collagenases. Eur J Biochem. 1973 Jul 16;36(2):473–481. doi: 10.1111/j.1432-1033.1973.tb02932.x. [DOI] [PubMed] [Google Scholar]
  24. Pontremoli S., Melloni E., Michetti M., Sacco O., Sparatore B., Salamino F., Damiani G., Horecker B. L. Cytolytic effects of neutrophils: role for a membrane-bound neutral proteinase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1685–1689. doi: 10.1073/pnas.83.6.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quigley J. P. Association of a protease (plasminogen activator) with a specific membrane fraction isolated from transformed cells. J Cell Biol. 1976 Nov;71(2):472–486. doi: 10.1083/jcb.71.2.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rindler-Ludwig R., Braunsteiner H. Cationic proteins from human neutrophil granulocytes. Evidence for their chymotrypsin-like properties. Biochim Biophys Acta. 1975 Feb 27;379(2):606–617. doi: 10.1016/0005-2795(75)90167-1. [DOI] [PubMed] [Google Scholar]
  27. Stoppelli M. P., Corti A., Soffientini A., Cassani G., Blasi F., Assoian R. K. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4939–4943. doi: 10.1073/pnas.82.15.4939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strickland S., Beers W. H. Studies on the role of plasminogen activator in ovulation. In vitro response of granulosa cells to gonadotropins, cyclic nucleotides, and prostaglandins. J Biol Chem. 1976 Sep 25;251(18):5694–5702. [PubMed] [Google Scholar]
  29. Stump D. C., Lijnen H. R., Collen D. Purification and characterization of single-chain urokinase-type plasminogen activator from human cell cultures. J Biol Chem. 1986 Jan 25;261(3):1274–1278. [PubMed] [Google Scholar]
  30. Unkeless J. C., Gordon S., Reich E. Secretion of plasminogen activator by stimulated macrophages. J Exp Med. 1974 Apr 1;139(4):834–850. doi: 10.1084/jem.139.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vassalli J. D., Baccino D., Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol. 1985 Jan;100(1):86–92. doi: 10.1083/jcb.100.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vassalli J. D., Dayer J. M., Wohlwend A., Belin D. Concomitant secretion of prourokinase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macrophages. J Exp Med. 1984 Jun 1;159(6):1653–1668. doi: 10.1084/jem.159.6.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vassalli J. D., Hamilton J., Reich E. Macrophage plasminogen activator: induction by concanavalin A and phorbol myristate acetate. Cell. 1977 Jul;11(3):695–705. doi: 10.1016/0092-8674(77)90086-1. [DOI] [PubMed] [Google Scholar]
  34. Vassalli J. D., Hamilton J., Reich E. Macrophage plasminogen activator: modulation of enzyme production by anti-inflammatory steroids, mitotic inhibitors, and cyclic nucleotides. Cell. 1976 Jun;8(2):271–281. doi: 10.1016/0092-8674(76)90011-8. [DOI] [PubMed] [Google Scholar]
  35. Wun T. C., Ossowski L., Reich E. A proenzyme form of human urokinase. J Biol Chem. 1982 Jun 25;257(12):7262–7268. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES