Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1986 Oct 1;164(4):1043–1059. doi: 10.1084/jem.164.4.1043

Thymic B lymphocyte clones from patients with myasthenia gravis secrete monoclonal striational autoantibodies reacting with myosin, alpha actinin, or actin

PMCID: PMC2188418  PMID: 3020150

Abstract

Striational autoantibodies (StrAb), which react with elements of skeletal muscle cross-striations, occur frequently in patients with thymoma associated with myasthenia gravis (MG). Dissociated thymic lymphocytes from 22 of 72 MG patients secreted StrAb when cultured with PWM. A high yield of EBV-transformed B cell lines was established from thymus, thymoma, and peripheral blood of seven patients with MG, but clones secreting StrAb arose only from the three patients who had StrAb in their sera. The monoclonal StrAb bound to A bands or I bands in skeletal muscle of human, rat, and frog. One bound to mitochondria in addition to myofibrillar I bands. None bound to nuclei, smooth muscle, or gastric mucosal cells. In immunoblot analyses and ELISAs the monoclonal StrAb bound to muscle and nonmuscle isotypes of myosin, alpha actinin, and/or actin. All bound to contractile proteins common to thymus and muscle, and one selectively immunostained epithelial cells of the thymic medulla. From these antigenic specificities we suggest that StrAb might arise as an immune response directed against the cytoskeletal anchoring proteins associated with nicotinic acetylcholine receptors in thymic epithelial cells undergoing neoplastic transformation to thymoma.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autoantibodies to acetylcholine receptors in myasthenia gravis. N Engl J Med. 1983 Feb 17;308(7):402–403. doi: 10.1056/NEJM198302173080718. [DOI] [PubMed] [Google Scholar]
  2. BEUTNER E. H., WITEBSKY E., RICKEN D., ADLER R. H. Studies on autoantibodies in myasthenia gravis. JAMA. 1962 Oct 6;182:46–58. [PubMed] [Google Scholar]
  3. Bennett V., Stenbuck P. J. Human erythrocyte ankyrin. Purification and properties. J Biol Chem. 1980 Mar 25;255(6):2540–2548. [PubMed] [Google Scholar]
  4. Bloch R. J. Actin at receptor-rich domains of isolated acetylcholine receptor clusters. J Cell Biol. 1986 Apr;102(4):1447–1458. doi: 10.1083/jcb.102.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloch R. J., Hall Z. W. Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alpha-actinin, and filamin. J Cell Biol. 1983 Jul;97(1):217–223. doi: 10.1083/jcb.97.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connolly J. A. Role of the cytoskeleton in the formation, stabilization, and removal of acetylcholine receptor clusters in cultured muscle cells. J Cell Biol. 1984 Jul;99(1 Pt 1):148–154. doi: 10.1083/jcb.99.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Engel A. G., Lambert E. H., Howard F. M. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin Proc. 1977 May;52(5):267–280. [PubMed] [Google Scholar]
  8. Engel E. K., Trotter J. L., McFarlin D. E., McIntosh C. L. Thymic epithelial cell contains acetylcholine receptor. Lancet. 1977 Jun 18;1(8025):1310–1311. doi: 10.1016/s0140-6736(77)91343-5. [DOI] [PubMed] [Google Scholar]
  9. Frazer I. H., Mackay I. R., Jordan T. W., Whittingham S., Marzuki S. Reactivity of anti-mitochondrial autoantibodies in primary biliary cirrhosis: definition of two novel mitochondrial polypeptide autoantigens. J Immunol. 1985 Sep;135(3):1739–1745. [PubMed] [Google Scholar]
  10. Fujii N., Itoyama Y., Tabira T., Kuroiwa Y. Subsets of lymphoid cells in blood and thymus in myasthenia gravis. Monoclonal antibody analysis. J Neuroimmunol. 1983 Jun;4(3):151–159. doi: 10.1016/0165-5728(83)90031-0. [DOI] [PubMed] [Google Scholar]
  11. Gotti C., Conti-Tronconi B. M., Raftery M. A. Mammalian muscle acetylcholine receptor purification and characterization. Biochemistry. 1982 Jun 22;21(13):3148–3154. doi: 10.1021/bi00256a018. [DOI] [PubMed] [Google Scholar]
  12. Haspel M. V., McCabe R. P., Pomato N., Janesch N. J., Knowlton J. V., Peters L. C., Hoover H. C., Jr, Hanna M. G., Jr Generation of tumor cell-reactive human monoclonal antibodies using peripheral blood lymphocytes from actively immunized colorectal carcinoma patients. Cancer Res. 1985 Aug;45(8):3951–3961. [PubMed] [Google Scholar]
  13. Lambert C. C., Lambert G. The role of actin and myosin in ascidian sperm mitochondrial translocation. Dev Biol. 1984 Dec;106(2):307–314. doi: 10.1016/0012-1606(84)90229-x. [DOI] [PubMed] [Google Scholar]
  14. Lennon V. A., Seybold M. E., Lindstrom J. M., Cochrane C., Ulevitch R. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med. 1978 Apr 1;147(4):973–983. doi: 10.1084/jem.147.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lisak R. P., Zweiman B., Skolnik P., Levinson A. I., Moskovitz A. R., Guerrero F. Thymic lymphocyte subpopulations in myasthenia gravis. Neurology. 1983 Jul;33(7):868–872. doi: 10.1212/wnl.33.7.868. [DOI] [PubMed] [Google Scholar]
  16. Lubit B. W. Association of beta-cytoplasmic actin with high concentrations of acetylcholine receptor (AChR) in normal and anti-AChR-treated primary rat muscle cultures. J Histochem Cytochem. 1984 Sep;32(9):973–981. doi: 10.1177/32.9.6379042. [DOI] [PubMed] [Google Scholar]
  17. Martin-Zanca D., Hughes S. H., Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. 1986 Feb 27-Mar 5Nature. 319(6056):743–748. doi: 10.1038/319743a0. [DOI] [PubMed] [Google Scholar]
  18. Maruta H., Knoerzer W., Hinssen H., Isenberg G. Regulation of actin polymerization by non-polymerizable actin-like proteins. 1984 Nov 29-Dec 5Nature. 312(5993):424–427. doi: 10.1038/312424a0. [DOI] [PubMed] [Google Scholar]
  19. Momoi M. Y., Lennon V. A. Purification and biochemical characterization of nicotinic acetylcholine receptors of human muscle. J Biol Chem. 1982 Nov 10;257(21):12757–12764. [PubMed] [Google Scholar]
  20. NASTUK W. L., PLESCIA O. J., OSSERMAN K. E. Changes in serum complement activity in patients with myasthenia gravis. Proc Soc Exp Biol Med. 1960 Oct;105:177–184. doi: 10.3181/00379727-105-26050. [DOI] [PubMed] [Google Scholar]
  21. Pardo J. V., Pittenger M. F., Craig S. W. Subcellular sorting of isoactins: selective association of gamma actin with skeletal muscle mitochondria. Cell. 1983 Apr;32(4):1093–1103. doi: 10.1016/0092-8674(83)90293-3. [DOI] [PubMed] [Google Scholar]
  22. Peers J., McDonald B. L., Dawkins R. L. The reactivity of the antistriational antibodies associated with thymoma and myasthenia gravis. Clin Exp Immunol. 1977 Jan;27(1):66–73. [PMC free article] [PubMed] [Google Scholar]
  23. Peng H. B. Cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor cluster in cell cultures. J Cell Biol. 1983 Aug;97(2):489–498. doi: 10.1083/jcb.97.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Penn A. S., Schotland D. L., Rowland L. P. Antibody to human myosin in man. Trans Am Neurol Assoc. 1969;94:48–53. [PubMed] [Google Scholar]
  25. Reedman B. M., Klein G. Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer. 1973 May;11(3):499–520. doi: 10.1002/ijc.2910110302. [DOI] [PubMed] [Google Scholar]
  26. Robinson J. E., Stevens K. C. Production of autoantibodies to cellular antigens by human B cells transformed by Epstein-Barr virus. Clin Immunol Immunopathol. 1984 Dec;33(3):339–350. doi: 10.1016/0090-1229(84)90305-2. [DOI] [PubMed] [Google Scholar]
  27. Rosenow E. C., 3rd, Hurley B. T. Disorders of the thymus. A review. Arch Intern Med. 1984 Apr;144(4):763–770. [PubMed] [Google Scholar]
  28. Saag M. S., Britz J. Asymptomatic blood donor with a false positive HTLV-III Western blot. N Engl J Med. 1986 Jan 9;314(2):118–118. doi: 10.1056/nejm198601093140212. [DOI] [PubMed] [Google Scholar]
  29. Sanger J. W., Mittal B., Sanger J. M. Analysis of myofibrillar structure and assembly using fluorescently labeled contractile proteins. J Cell Biol. 1984 Mar;98(3):825–833. doi: 10.1083/jcb.98.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Satoh J., Prabhakar B. S., Haspel M. V., Ginsberg-Fellner F., Notkins A. L. Human monoclonal autoantibodies that react with multiple endocrine organs. N Engl J Med. 1983 Jul 28;309(4):217–220. doi: 10.1056/NEJM198307283090405. [DOI] [PubMed] [Google Scholar]
  31. Stanislawsky L., Mongiat F., Moura Neto V. Presence of actin in oncornaviruses. Biochem Biophys Res Commun. 1984 Jan 30;118(2):580–586. doi: 10.1016/0006-291x(84)91342-1. [DOI] [PubMed] [Google Scholar]
  32. Strauss A. J., Kemp P. G., Jr Serum autoantibodies in myasthenia gravis and thymoma: selective affinity for I-bands of striated muscle as a guide to identification of antigen(s). J Immunol. 1967 Nov;99(5):945–953. [PubMed] [Google Scholar]
  33. Strauss A. J., Smith C. W., Cage G. W., van der Geld H. W., McFarlin D. E., Barlow M. Further studies on the specificity of presumed immune associations of myasthenia gravis and consideration of possible pathogenic implications. Ann N Y Acad Sci. 1966 Jan 26;135(1):557–579. doi: 10.1111/j.1749-6632.1966.tb45504.x. [DOI] [PubMed] [Google Scholar]
  34. Strauss A. J., van der Geld H. W., Kemp P. G., Jr, Exum E. D., Goodman H. C. Immunological concomitants of myasthenia gravis. Ann N Y Acad Sci. 1965 Jun 30;124(2):744–766. doi: 10.1111/j.1749-6632.1965.tb18999.x. [DOI] [PubMed] [Google Scholar]
  35. Tosato G., Blaese R. M., Yarchoan R. Relationship between immunoglobulin production and immortalization by Epstein Barr virus. J Immunol. 1985 Aug;135(2):959–964. [PubMed] [Google Scholar]
  36. Toyka K. V., Drachman D. B., Griffin D. E., Pestronk A., Winkelstein J. A., Fishbeck K. H., Kao I. Myasthenia gravis. Study of humoral immune mechanisms by passive transfer to mice. N Engl J Med. 1977 Jan 20;296(3):125–131. doi: 10.1056/NEJM197701202960301. [DOI] [PubMed] [Google Scholar]
  37. VAN DER GELD H., FELTKAMP T. E., OOSTERHUIS H. J. REACTIVITY OF MYASTHENIA GRAVIS SERUM GAMMA-GLOBULIN WITH SKELETAL MUSCLE AND THYMUS DEMONSTRATED BY IMMUNOFLUORESCENCE. Proc Soc Exp Biol Med. 1964 Mar;115:782–785. doi: 10.3181/00379727-115-29037. [DOI] [PubMed] [Google Scholar]
  38. Vetters J. M. Immunofluorescence staining patterns in skeletal muscle using serum of myasthenic patients and normal controls. Immunology. 1965 Jul;9(1):93–95. [PMC free article] [PubMed] [Google Scholar]
  39. Vincent A., Scadding G. K., Thomas H. C., Newsom-Davis J. In-vitro synthesis of anti-acetylcholine-receptor antibody by thymic lymphocytes in myasthenia gravis. Lancet. 1978 Feb 11;1(8059):305–307. doi: 10.1016/s0140-6736(78)90073-9. [DOI] [PubMed] [Google Scholar]
  40. Yang H. Y., Lieska N., Goldman A. E., Goldman R. D. A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells. J Cell Biol. 1985 Feb;100(2):620–631. doi: 10.1083/jcb.100.2.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van der Geld H., Oosterhuis H. J. Autoantibodies and myasthenia gravis: epithelial cells of the thymus. Ann N Y Acad Sci. 1966 Jan 26;135(1):631–637. doi: 10.1111/j.1749-6632.1966.tb45509.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES