Abstract
Incubation of activated mouse peritoneal macrophages with tumor cell- conditioned medium (TCM) results in their deactivation, as measured by ability to release reactive oxygen intermediates and kill protozoal pathogens. The mechanism of suppression by macrophage deactivation factor (MDF) was studied. Inhibition of H2O2 release could not be overcome by increasing the concentration of phorbol diesters used to trigger the respiratory burst. Deactivated macrophages consumed H2O2 at the same rate as activated cells (t1/2, 35-40 min for 25 nmol H2O2 per 10(6) peritoneal cells). They transported glucose with the same kinetics (Km, 1 mM; Vmax, approximately 100 nmol per 6 min per milligram cell protein), and maintained similar intracellular concentrations of NADPH and NADP (approximately 0.62 mM and approximately 0.11 mM, respectively), as measured by enzymatic cycling methods and determinations of the volume of cell water (3.6 microliter/mg cell protein). To study the kinetics of the PMA-triggered NADPH oxidase in cell lysates, mixed detergents were used (deoxycholate and Tween 20). These stabilized the oxidase for approximately 3.3-fold longer than deoxycholate alone, which was used in previous studies. Incubation of activated macrophages in MDF resulted in a marked increase in the Km of the oxidase for NADPH, from 0.06 mM to 0.67 mM. The Vmax fell approximately 1.7-fold. These kinetic changes, together with the measured intracellular concentration of NADPH, account quantitatively for the suppression of H2O2 release by deactivated macrophages, and are nearly the mirror image of the kinetic changes observed during macrophage activation.
Full Text
The Full Text of this article is available as a PDF (865.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M. The respiratory burst of phagocytes. J Clin Invest. 1984 Mar;73(3):599–601. doi: 10.1172/JCI111249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellavite P., Berton G., Dri P., Soranzo M. R. Enzymatic basis of the respiratory burst of guinea pig resident peritoneal macrophages. J Reticuloendothel Soc. 1981 Jan;29(1):47–60. [PubMed] [Google Scholar]
- Bellavite P., Serra M. C., Davoli A., Bannister J. V., Rossi F. The NADPH oxidase of guinea pig polymorphonuclear leucocytes. Properties of the deoxycholate extracted enzyme. Mol Cell Biochem. 1983;52(1):17–25. doi: 10.1007/BF00230585. [DOI] [PubMed] [Google Scholar]
- Berton G., Cassatella M. A., Bellavite P., Rossi F. Molecular basis of macrophage activation. Expression of the low potential cytochrome b and its reduction upon cell stimulation in activated macrophages. J Immunol. 1986 Feb 15;136(4):1393–1399. [PubMed] [Google Scholar]
- Berton G., Cassatella M., Cabrini G., Rossi F. Activation of mouse macrophages causes no change in expression and function of phorbol diesters' receptors, but is accompanied by alterations in the activity and kinetic parameters of NADPH oxidase. Immunology. 1985 Feb;54(2):371–379. [PMC free article] [PubMed] [Google Scholar]
- Bonventre P. F., Straus D., Baughn R. E., Imhoff J. Enhancement of carrier-mediated transport after immunologic activation of peritoneal macrophages. J Immunol. 1977 May;118(5):1827–1835. [PubMed] [Google Scholar]
- Cassatella M. A., Della Bianca V., Berton G., Rossi F. Activation by gamma interferon of human macrophage capability to produce toxic oxygen molecules is accompanied by decreased Km of the superoxide-generating NADPH oxidase. Biochem Biophys Res Commun. 1985 Nov 15;132(3):908–914. doi: 10.1016/0006-291x(85)91893-5. [DOI] [PubMed] [Google Scholar]
- Cox J. A., Jeng A. Y., Sharkey N. A., Blumberg P. M., Tauber A. I. Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J Clin Invest. 1985 Nov;76(5):1932–1938. doi: 10.1172/JCI112190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabig T. G., Lefker B. A. Deficient flavoprotein component of the NADPH-dependent O2-.-generating oxidase in the neutrophils from three male patients with chronic granulomatous disease. J Clin Invest. 1984 Mar;73(3):701–705. doi: 10.1172/JCI111262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakinuma K., Kaneda M., Chiba T., Ohnishi T. Electron spin resonance studies on a flavoprotein in neutrophil plasma membranes. Redox potentials of the flavin and its participation in NADPH oxidase. J Biol Chem. 1986 Jul 15;261(20):9426–9432. [PubMed] [Google Scholar]
- Kakinuma K., Minakami S. Effects of fatty acids on superoxide radical generation in leukocytes. Biochim Biophys Acta. 1978 Jan 3;538(1):50–59. doi: 10.1016/0304-4165(78)90251-9. [DOI] [PubMed] [Google Scholar]
- Kitagawa S., Johnston R. B., Jr Deactivation of the respiratory burst in activated macrophages: evidence for alteration of signal transduction. J Immunol. 1986 Apr 1;136(7):2605–2612. [PubMed] [Google Scholar]
- Kiyotaki C., Peisach J., Bloom B. R. Oxygen metabolism in cloned macrophage cell lines: glucose dependence of superoxide production, metabolic and spectral analysis. J Immunol. 1984 Feb;132(2):857–866. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Nathan C. F. Mechanisms of macrophage antimicrobial activity. Trans R Soc Trop Med Hyg. 1983;77(5):620–630. doi: 10.1016/0035-9203(83)90190-6. [DOI] [PubMed] [Google Scholar]
- Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
- Sasada M., Pabst M. J., Johnston R. B., Jr Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J Biol Chem. 1983 Aug 25;258(16):9631–9635. [PubMed] [Google Scholar]
- Segal A. W., Cross A. R., Garcia R. C., Borregaard N., Valerius N. H., Soothill J. F., Jones O. T. Absence of cytochrome b-245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med. 1983 Feb 3;308(5):245–251. doi: 10.1056/NEJM198302033080503. [DOI] [PubMed] [Google Scholar]
- Szuro-Sudol A., Murray H. W., Nathan C. F. Suppression of macrophage antimicrobial activity by a tumor cell product. J Immunol. 1983 Jul;131(1):384–387. [PubMed] [Google Scholar]
- Szuro-Sudol A., Nathan C. F. Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells. J Exp Med. 1982 Oct 1;156(4):945–961. doi: 10.1084/jem.156.4.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsunawaki S., Nathan C. F. Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J Biol Chem. 1984 Apr 10;259(7):4305–4312. [PubMed] [Google Scholar]
- Wakeyama H., Takeshige K., Takayanagi R., Minakami S. Superoxide-forming NADPH oxidase preparation of pig polymorphonuclear leucocyte. Biochem J. 1982 Sep 1;205(3):593–601. doi: 10.1042/bj2050593. [DOI] [PMC free article] [PubMed] [Google Scholar]