Abstract
The immunologic mechanisms involved in virus-induced hepatitis were examined by measuring the cytotoxic capabilities and the morphologic and antigenic phenotypes of leukocytes isolated from livers of virus- infected mice. Large granular lymphocytes (LGL) of both natural killer (NK) cell and cytotoxic T lymphocyte (CTL) phenotypes were found to accumulate in livers of mice infected with either the nonhepatotropic Armstrong strain of lymphocytic choriomeningitis virus (LCMV-ARM) or the hepatotropic WE strain (LCMV-WE). Between days 1 and 5 postinfection (p.i.), both viruses induced a three- to fourfold increase in NK cell lytic activity in the livers of C3H/St mice and a three- to fourfold increase in the number of LGL in the organ. These LGL were characterized as NK cells on the basis of cell surface antigens, kinetics of appearance, target cell range, and morphology. By day 7 p.i., virus-specific, H-2-restricted, Thy-1+, Lyt-2+, CTL activity was present in the liver, and its appearance correlated with a second wave of LGL accumulation. CTL activity, total leukocyte number, and CTL/LGL number were at least fivefold higher in the livers of mice infected with LCMV-WE than with LCMV-ARM. The dramatic LCMV-WE-induced day 7 increases in total leukocytes and LGL were absent in athymic nude (nu/nu) mice, suggesting that the increases were T cell-dependent. LCMV- ARM infection of C57BL/6 mice induced significant spleen CTL activity but little liver CTL activity, whereas LCMV-WE infection resulted in significant liver CTL activity but minimal spleen CTL activity. Mice infected with the cytopathic hepatotropic viruses, mouse hepatitis virus (MHV) and murine cytomegalovirus (MCMV), experienced much greater increases in liver NK/LGL by day 3 p.i. than did mice infected with LCMV or injected with the interferon-inducer poly(I-C). MHV-infected mice homozygous for the beige (bg/bg) mutation also exhibited significant increases in liver NK/LGL cell number and activity, although the activity was less than heterozygote controls, and the morphology of the LGL granules was aberrant. These data show that the LGL accumulate in virus-infected organs, in this case, the liver. An early NK/LGL influx is most pronounced during infection with cytopathic hepatotropic viruses. This initial influx of NK/LGL is followed later by an influx of CTL also possessing LGL morphology. The CTL/LGL response in the liver is significantly greater during hepatotropic virus infections, even when a strong CTL response in the spleen is lacking.
Full Text
The Full Text of this article is available as a PDF (961.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biron C. A., Natuk R. J., Welsh R. M. Generation of large granular T lymphocytes in vivo during viral infection. J Immunol. 1986 Mar 15;136(6):2280–2286. [PubMed] [Google Scholar]
- Biron C. A., Pedersen K. F., Welsh R. M. Purification and target cell range of in vivo elicited blast natural killer cells. J Immunol. 1986 Jul 15;137(2):463–471. [PubMed] [Google Scholar]
- Biron C. A., Sonnenfeld G., Welsh R. M. Interferon induces natural killer cell blastogenesis in vivo. J Leukoc Biol. 1984 Jan;35(1):31–37. doi: 10.1002/jlb.35.1.31. [DOI] [PubMed] [Google Scholar]
- Biron C. A., Turgiss L. R., Welsh R. M. Increase in NK cell number and turnover rate during acute viral infection. J Immunol. 1983 Sep;131(3):1539–1545. [PubMed] [Google Scholar]
- Biron C. A., Welsh R. M. Blastogenesis of natural killer cells during viral infection in vivo. J Immunol. 1982 Dec;129(6):2788–2795. [PubMed] [Google Scholar]
- Bruce J., Symington F. W., McKearn T. J., Sprent J. A monoclonal antibody discriminating between subsets of T and B cells. J Immunol. 1981 Dec;127(6):2496–2501. [PubMed] [Google Scholar]
- Bukowski J. F., Warner J. F., Dennert G., Welsh R. M. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med. 1985 Jan 1;161(1):40–52. doi: 10.1084/jem.161.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol. 1983 Sep;131(3):1531–1538. [PubMed] [Google Scholar]
- David G. B., Galbraith W., Geyer S. B., Koether A. M., Palmer N. F., Pixler J. Improved isolation, separation and cytochemistry of living cells. Prog Histochem Cytochem. 1975;7(1):1–49. doi: 10.1016/s0079-6336(75)80002-7. [DOI] [PubMed] [Google Scholar]
- Doherty P. C., Dunlop M. B., Parish C. R., Zinkernagel R. M. Inflammatory process in murine lymphocytic choriomeningitis is maximal in H-2K or H-2D compatible interactions. J Immunol. 1976 Jul;117(1):187–190. [PubMed] [Google Scholar]
- Doherty P. C., Korngold R. Characteristics of poxvirus-induced meningitis: virus-specific and non-specific cytotoxic effectors in the inflammatory exudate. Scand J Immunol. 1983 Jul;18(1):1–7. doi: 10.1111/j.1365-3083.1983.tb00828.x. [DOI] [PubMed] [Google Scholar]
- Fenyö E. M., Klein E., Klein G., Swiech K. Selection of an immunoresistant Moloney lymphoma subline with decreased concentration of tumor-specific surface antigens. J Natl Cancer Inst. 1968 Jan;40(1):69–89. [PubMed] [Google Scholar]
- Habu S., Fukui H., Shimamura K., Kasai M., Nagai Y., Okumura K., Tamaoki N. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol. 1981 Jul;127(1):34–38. [PubMed] [Google Scholar]
- Herberman R. B., Nunn M. E., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975 Aug 15;16(2):216–229. doi: 10.1002/ijc.2910160204. [DOI] [PubMed] [Google Scholar]
- Itoh K., Suzuki R., Umezu Y., Hanaumi K., Kumagai K. Studies of murine large granular lymphocytes. II. Tissue, strain, and age distributions of LGL and LAL. J Immunol. 1982 Jul;129(1):395–405. [PubMed] [Google Scholar]
- Kiessling R., Klein E., Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975 Feb;5(2):112–117. doi: 10.1002/eji.1830050208. [DOI] [PubMed] [Google Scholar]
- Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
- McIntyre K. W., Bukowski J. F., Welsh R. M. Exquisite specificity of adoptive immunization in arenavirus-infected mice. Antiviral Res. 1985 Oct;5(5):299–305. doi: 10.1016/0166-3542(85)90044-0. [DOI] [PubMed] [Google Scholar]
- Millard P. J., Henkart M. P., Reynolds C. W., Henkart P. A. Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol. 1984 Jun;132(6):3197–3204. [PubMed] [Google Scholar]
- Pfau C. J., Saron M. F., Pevear D. C. Lack of correlation between cytotoxic T lymphocytes and lethal murine lymphocytic choriomeningitis. J Immunol. 1985 Jul;135(1):597–602. [PubMed] [Google Scholar]
- Podack E. R., Konigsberg P. J. Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J Exp Med. 1984 Sep 1;160(3):695–710. doi: 10.1084/jem.160.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein-Streilein J., Bennett M., Mann D., Kumar V. Natural killer cells in mouse lung: surface phenotype, target preference, and response to local influenza virus infection. J Immunol. 1983 Dec;131(6):2699–2704. [PubMed] [Google Scholar]
- Stitz L., Althage A., Hengartner H., Zinkernagel R. Natural killer cells vs cytotoxic T cells in the peripheral blood of virus-infected mice. J Immunol. 1985 Jan;134(1):598–602. [PubMed] [Google Scholar]
- Sturman L. S., Holmes K. V. The molecular biology of coronaviruses. Adv Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor G., Stott E. J., Hayle A. J. Cytotoxic lymphocytes in the lungs of mice infected with respiratory syncytial virus. J Gen Virol. 1985 Dec;66(Pt 12):2533–2538. doi: 10.1099/0022-1317-66-12-2533. [DOI] [PubMed] [Google Scholar]
- Timonen T., Ranki A., Saksela E., Häyry P. Human natural cell-mediated cytotoxicity against fetal fibroblasts. III. Morphological and functional characterization of the effector cells. Cell Immunol. 1979 Nov;48(1):121–132. doi: 10.1016/0008-8749(79)90105-9. [DOI] [PubMed] [Google Scholar]
- Welsh R. M., Biron C. A., Bukowski J. F., McIntyre K. W., Yang H. Role of natural killer cells in virus infections of mice. Surv Synth Pathol Res. 1984;3(5):409–431. doi: 10.1159/000156943. [DOI] [PubMed] [Google Scholar]
- Welsh R. M., Jr Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. I. Characterization of natural killer cell induction. J Exp Med. 1978 Jul 1;148(1):163–181. doi: 10.1084/jem.148.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh R. M. Natural cell-mediated immunity during viral infections. Curr Top Microbiol Immunol. 1981;92:83–106. doi: 10.1007/978-3-642-68069-4_6. [DOI] [PubMed] [Google Scholar]
- Welsh R. M., Pfau C. J. Determinants of lymphocytic choriomeningitis interference. J Gen Virol. 1972 Feb;14(2):177–187. doi: 10.1099/0022-1317-14-2-177. [DOI] [PubMed] [Google Scholar]
- Wiltrout R. H., Mathieson B. J., Talmadge J. E., Reynolds C. W., Zhang S. R., Herberman R. B., Ortaldo J. R. Augmentation of organ-associated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver. J Exp Med. 1984 Nov 1;160(5):1431–1449. doi: 10.1084/jem.160.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M., Doherty P. C. H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D;. J Exp Med. 1975 Jun 1;141(6):1427–1436. doi: 10.1084/jem.141.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M. H-2 restriction of virus-specific T-cell-mediated effector functions in vivo. II. Adoptive transfer of delayed-type hypersensitivity to murine lymphocytic choriomeningits virus is restriced by the K and D region of H-2. J Exp Med. 1976 Sep 1;144(3):776–787. doi: 10.1084/jem.144.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M., Welsh R. M. H-2 compatibility requirement for virus-specific T cell-mediated effector functions in vivo. I. Specificity of T cells conferring antiviral protection against lymphocytic choriomeningitis virus is associated with H-2K and H-2D. J Immunol. 1976 Nov;117(5 Pt 1):1495–1502. [PubMed] [Google Scholar]