Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Feb 1;165(2):500–514. doi: 10.1084/jem.165.2.500

Secretion of pyruvate. An antioxidant defense of mammalian cells

PMCID: PMC2188509  PMID: 3102672

Abstract

Cells in culture are exposed to marked oxidative stress, H2O2 being one of the predominant agents. Pyruvate and other alpha-ketoacids reacted rapidly, stoichiometrically, and nonenzymatically with H2O2, and they protected cells from its cytolytic effects. All five human and murine cell types studied, both malignant and nonmalignant, released pyruvate at an initial rate of 35-60 microM/h/2.5 X 10(6) cells when placed in 1 ml pyruvate-free medium. After 6-12 h a plateau of 60-150 microM pyruvate was attained, corresponding to concentrations reported for normal human serum and plasma. The rate of pyruvate accumulation was almost doubled in the presence of exogenous catalase, suggesting that released pyruvate functions as an antioxidant. The rate of pyruvate accumulation was dependent on cell number. Succinate, fumarate, citrate, oxaloacetate, alpha-ketoglutarate, and malate were not secreted in significant amounts from P815 cells; export was specific for pyruvate and lactate among the metabolites tested. Extracellular pyruvate was in equilibrium with intracellular stores. Thus, cells conditioned the extracellular medium with pyruvate at the expense of intracellular pyruvate, until homeostatic levels were attained in both compartments. We propose that cells plated at low density in the absence of exogenous pyruvate fail to thrive for two reasons: prolonged depletion of intracellular pyruvate and prolonged vulnerability to oxidant stress.

Full Text

The Full Text of this article is available as a PDF (911.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6858–6862. doi: 10.1073/pnas.78.11.6858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson M. E., Meister A. Dynamic state of glutathione in blood plasma. J Biol Chem. 1980 Oct 25;255(20):9530–9533. [PubMed] [Google Scholar]
  3. Arrick B. A., Griffo W., Cohn Z., Nathan C. Hydrogen peroxide from cellular metabolism of cystine. A requirement for lysis of murine tumor cells by vernolepin, a glutathione-depleting antineoplastic. J Clin Invest. 1985 Aug;76(2):567–574. doi: 10.1172/JCI112008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BIERI J. G., TEETS L., BELAVADY B., ANDREWS E. L. SERUM VITAMIN E LEVELS IN A NORMAL ADULT POPULATION IN THE WASHINGTON, D. C., AREA. Proc Soc Exp Biol Med. 1964 Oct;117:131–133. doi: 10.3181/00379727-117-29515. [DOI] [PubMed] [Google Scholar]
  5. Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
  6. Bairdparker A. C., Davenport E. The effect of recovery medium on the isolation of Staphylococcus aureus after heat treatment and after the storage of frozen or dried cells. J Appl Bacteriol. 1965 Dec;28(3):390–402. doi: 10.1111/j.1365-2672.1965.tb02169.x. [DOI] [PubMed] [Google Scholar]
  7. Bolton F. J., Coates D., Hutchinson D. N. The ability of campylobacter media supplements to neutralize photochemically induced toxicity and hydrogen peroxide. J Appl Bacteriol. 1984 Feb;56(1):151–157. doi: 10.1111/j.1365-2672.1984.tb04707.x. [DOI] [PubMed] [Google Scholar]
  8. Bünger R. Compartmented pyruvate in perfused working heart. Am J Physiol. 1985 Sep;249(3 Pt 2):H439–H449. doi: 10.1152/ajpheart.1985.249.3.H439. [DOI] [PubMed] [Google Scholar]
  9. Carlsson J., Granberg G. P., Nyberg G. K., Edlund M. B. Bactericidal effect of cysteine exposed to atmospheric oxygen. Appl Environ Microbiol. 1979 Mar;37(3):383–390. doi: 10.1128/aem.37.3.383-390.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cavallini D., De Marco C., Dupré S. Luminol chemiluminescence studies of the oxidation of cysteine and other thiols to disulfides. Arch Biochem Biophys. 1968 Mar 20;124(1):18–26. doi: 10.1016/0003-9861(68)90299-3. [DOI] [PubMed] [Google Scholar]
  11. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  12. Dijkstra U., Gabreëls F., Joosten E., Wevers R., Lamers K., Doesburg W., Renier W. Friedreich's ataxia: intravenous pyruvate load to demonstrate a defect in pyruvate metabolism. Neurology. 1984 Nov;34(11):1493–1497. doi: 10.1212/wnl.34.11.1493. [DOI] [PubMed] [Google Scholar]
  13. EAGLE H., PIEZ K. The population-dependent requirement by cultured mammalian cells for metabolites which they can synthesize. J Exp Med. 1962 Jul 1;116:29–43. doi: 10.1084/jem.116.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ellem K. A., Kay G. F. The nature of conditioning nutrients for human malignant melanoma cultures. J Cell Sci. 1983 Jul;62:249–266. doi: 10.1242/jcs.62.1.249. [DOI] [PubMed] [Google Scholar]
  15. Fafournoux P., Demigné C., Rémésy C. Carrier-mediated uptake of lactate in rat hepatocytes. Effects of pH and possible mechanisms for L-lactate transport. J Biol Chem. 1985 Jan 10;260(1):292–299. [PubMed] [Google Scholar]
  16. Goldstein I. M., Kaplan H. B., Edelson H. S., Weissmann G. Ceruloplasmin. A scavenger of superoxide anion radicals. J Biol Chem. 1979 May 25;254(10):4040–4045. [PubMed] [Google Scholar]
  17. HERZENBERG L. A., ROOSA R. A. Nutritional requirements for growth of a mouse lymphoma in cell culture. Exp Cell Res. 1960 Nov;21:430–438. doi: 10.1016/0014-4827(60)90275-5. [DOI] [PubMed] [Google Scholar]
  18. HIGUCHI K. Studies on the nutrition and metabolism of animal cells in serum-free media. I. Serum-free monolayer cultures. J Infect Dis. 1963 May-Jun;112:213–220. doi: 10.1093/infdis/112.3.213. [DOI] [PubMed] [Google Scholar]
  19. Halestrap A. P., Denton R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974 Feb;138(2):313–316. doi: 10.1042/bj1380313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Halestrap A. P., Scott R. D., Thomas A. P. Mitochondrial pyruvate transport and its hormonal regulation. Int J Biochem. 1980;11(2):97–105. doi: 10.1016/0020-711x(80)90241-4. [DOI] [PubMed] [Google Scholar]
  21. Halestrap A. P. The mechanism of the inhibition of the mitochondrial pyruvate transportater by alpha-cyanocinnamate derivatives. Biochem J. 1976 Apr 15;156(1):181–183. doi: 10.1042/bj1560181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Halestrap A. P. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J. 1975 Apr;148(1):85–96. doi: 10.1042/bj1480085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys. 1979 Sep;196(2):385–395. doi: 10.1016/0003-9861(79)90289-3. [DOI] [PubMed] [Google Scholar]
  24. Hoffman P. S., George H. A., Krieg N. R., Smibert R. M. Studies of the microaerophilic nature of Campylobacter fetus subsp. jejuni. II. Role of exogenous superoxide anions and hydrogen peroxide. Can J Microbiol. 1979 Jan;25(1):8–16. doi: 10.1139/m79-002. [DOI] [PubMed] [Google Scholar]
  25. Jernigan H. M., Jr Role of hydrogen peroxide in riboflavin-sensitized photodynamic damage to cultured rat lenses. Exp Eye Res. 1985 Jul;41(1):121–129. doi: 10.1016/0014-4835(85)90101-0. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lawson A. M., Chalmers R. A., Watts R. W. Studies of O-substituted oxime-trimethylsilyl ester derivatives of some metabolically-important oxocarboxylic acids. Biomed Mass Spectrom. 1974 Jun;1(3):199–205. doi: 10.1002/bms.1200010311. [DOI] [PubMed] [Google Scholar]
  28. MOSER H. Modern approaches to the study of mammalian cells in culture. Experientia. 1960 Sep 15;16:385–398. doi: 10.1007/BF02178829. [DOI] [PubMed] [Google Scholar]
  29. Marklund S. L. Extracellular superoxide dismutase in human tissues and human cell lines. J Clin Invest. 1984 Oct;74(4):1398–1403. doi: 10.1172/JCI111550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin S. E., Flowers R. S., Ordal Z. J. Catalase: its effect on microbial enumeration. Appl Environ Microbiol. 1976 Nov;32(5):731–734. doi: 10.1128/aem.32.5.731-734.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McCormick J. P., Fischer J. R., Pachlatko J. P., Eisenstark A. Characterization of a cell-lethal product from the photooxidation of tryptophan: hydrogen peroxide. Science. 1976 Feb 6;191(4226):468–469. doi: 10.1126/science.1108203. [DOI] [PubMed] [Google Scholar]
  32. McDonald L. C., Hackney C. R., Ray B. Enhanced recovery of injured Escherichia coli by compounds that degrade hydrogen peroxide or block its formation. Appl Environ Microbiol. 1983 Feb;45(2):360–365. doi: 10.1128/aem.45.2.360-365.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McKeehan W. L., McKeehan K. A. Oxocarboxylic acids, pyridine nucleotide-linked oxidoreductases and serum factors in regulation of cell proliferation. J Cell Physiol. 1979 Oct;101(1):9–16. doi: 10.1002/jcp.1041010103. [DOI] [PubMed] [Google Scholar]
  34. McKeehan W. L., McKeehan K. A. Serum factors modify the cellular requirement for Ca2+, K+, Mg2+, phosphate ions, and 2-oxocarboxylic acids for multiplication of normal human fibroblasts. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3417–3421. doi: 10.1073/pnas.77.6.3417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Misra H. P. Generation of superoxide free radical during the autoxidation of thiols. J Biol Chem. 1974 Apr 10;249(7):2151–2155. [PubMed] [Google Scholar]
  36. Monson J. P., Smith J. A., Cohen R. D., Iles R. A. Evidence for a lactate transporter in the plasma membrane of the rat hepatocyte. Clin Sci (Lond) 1982 Apr;62(4):411–420. doi: 10.1042/cs0620411. [DOI] [PubMed] [Google Scholar]
  37. NEUMAN R. E., McCOY T. A. Growth-promoting properties of pyruvate oxal-acetate, and alpha-ketoglutarate for isolated Walker carcinosarcoma 256 cells. Proc Soc Exp Biol Med. 1958 Jun;98(2):303–306. doi: 10.3181/00379727-98-24025. [DOI] [PubMed] [Google Scholar]
  38. NEUMAN R. E., TYTELL A. A. Partial replacement of serum and embryo extract requirements for growth of avian cell cultures. Proc Soc Exp Biol Med. 1961 Apr;106:857–862. doi: 10.3181/00379727-106-26500. [DOI] [PubMed] [Google Scholar]
  39. Nathan C. F., Arrick B. A., Murray H. W., DeSantis N. M., Cohn Z. A. Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis. J Exp Med. 1981 Apr 1;153(4):766–782. doi: 10.1084/jem.153.4.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. O'Donnell-Tormey J., DeBoer C. J., Nathan C. F. Resistance of human tumor cells in vitro to oxidative cytolysis. J Clin Invest. 1985 Jul;76(1):80–86. doi: 10.1172/JCI111981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Papa S., Paradies G. On the mechanism of translocation of pyruvate and other monocarboxylic acids in rat-liver mitochondria. Eur J Biochem. 1974 Nov 1;49(1):265–274. doi: 10.1111/j.1432-1033.1974.tb03831.x. [DOI] [PubMed] [Google Scholar]
  45. Paradies G., Papa S. On the kinetics and substrate specificity of the pyruvate translocator in rat liver mitochondria. Biochim Biophys Acta. 1977 Nov 17;462(2):333–346. doi: 10.1016/0005-2728(77)90132-3. [DOI] [PubMed] [Google Scholar]
  46. Pine L., George J. R., Reeves M. W., Harrell W. K. Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol. 1979 May;9(5):615–626. doi: 10.1128/jcm.9.5.615-626.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pine L., Hoffman P. S., Malcolm G. B., Benson R. F., Franzus M. J. Role of keto acids and reduced-oxygen-scavenging enzymes in the growth of Legionella species. J Clin Microbiol. 1986 Jan;23(1):33–42. doi: 10.1128/jcm.23.1.33-42.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rayman M. K., Aris B., El Derea H. B. The effect of compounds which degrade hydrogen peroxide on the enumeration of heat-stressed cells of Salmonella senftenberg. Can J Microbiol. 1978 Jul;24(7):883–885. doi: 10.1139/m78-146. [DOI] [PubMed] [Google Scholar]
  49. Reitzer L. J., Wice B. M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979 Apr 25;254(8):2669–2676. [PubMed] [Google Scholar]
  50. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  51. Selak I., Skaper S. D., Varon S. Pyruvate participation in the low molecular weight trophic activity for central nervous system neurons in glia-conditioned media. J Neurosci. 1985 Jan;5(1):23–28. doi: 10.1523/JNEUROSCI.05-01-00023.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sevag M. G., Maiweg L. THE RESPIRATION MECHANISM OF PNEUMOCOCCUS. III. J Exp Med. 1934 Jun 30;60(1):95–105. doi: 10.1084/jem.60.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Spragg R. G., Hinshaw D. B., Hyslop P. A., Schraufstätter I. U., Cochrane C. G. Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells after oxidant injury. J Clin Invest. 1985 Oct;76(4):1471–1476. doi: 10.1172/JCI112126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wang R. J., Nixon B. R. Identification of hydrogen peroxide as a photoproduct toxic to human cells in tissue-culture medium irradiated with "daylight" fluorescent light. In Vitro. 1978 Aug;14(8):715–722. doi: 10.1007/BF02616168. [DOI] [PubMed] [Google Scholar]
  55. Wasilenko W. J., Marchok A. C. Pyruvate regulation of growth and differentiation in primary cultures of rat tracheal epithelial cells. Exp Cell Res. 1984 Dec;155(2):507–517. doi: 10.1016/0014-4827(84)90210-6. [DOI] [PubMed] [Google Scholar]
  56. Welch S. G., Metcalfe H. K., Monson J. P., Cohen R. D., Henderson R. M., Iles R. A. L(+)-Lactate binding to preparations of rat hepatocyte plasma membranes. J Biol Chem. 1984 Dec 25;259(24):15264–15271. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES