Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Feb 1;165(2):340–358. doi: 10.1084/jem.165.2.340

Clonal analysis of primary B cells responsive to the pathogenic bacterium Salmonella typhimurium

PMCID: PMC2188512  PMID: 2434596

Abstract

In the present study, a modification of the splenic focus system is used to analyze the S. typhimurium strain TML (TML)-specific B cell repertoire. The results show that the frequency of primary TML-specific splenic B cells in CBA/Ca mice is approximately 1 per 10(5) B cells and less than 30% of these B cells are specific for LPS. In contrast, the frequency of memory TML-specific cells is approximately 1 per 5-8 X 10(3) splenic B cells and greater than 95% of these B cells are specific for LPS. These results suggest that the frequency of primary TML-specific B cells is extremely low and that it expands 15-20-fold after antigen exposure. It is interesting that less than 30% of the primary B cells are specific for the LPS molecule since it is considered to be the major antigenic determinant on Salmonella organisms. Furthermore, the majority of the LPS-specific anti-TML antibody-producing clones are directed against the LPS O antigen region. Conversely, more than half to two-thirds of the memory LPS- specific anti-TML B cell clones are directed against the KDO or lipid A region of the LPS molecule. These results indicate that the preferential expansion of LPS-specific B cell clones observed after immunization resides primarily in the B cell subsets responsive to the KDO/lipid A moieties on the LPS molecule. Finally, unlike B cell responses to chemically defined antigens, TML stimulates very little IgG1 antibody. IgG2 and IgA isotypes appear to play a predominant role in anti-TML antibody responses, although all H chain classes are produced to some extent. Collectively, these findings are consistent with the responses reported for two other natural antigens, HA and PC. Hence, the pattern of stimulation by infectious agents, such as S. typhimurium, appears to be distinct from that of synthetic antigens. Thus, the studies presented herein have begun to provide insights into those subsets of B cells responsive to S. typhimurium and other infectious disease organisms.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angerman C. R., Eisenstein T. K. Comparative efficacy and toxicity of a ribosomal vaccine, acetone-killed cells, lipopolysaccharide, and a live cell vaccine prepared from Salmonella typhhimurium. Infect Immun. 1978 Feb;19(2):575–582. doi: 10.1128/iai.19.2.575-582.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angerman C. R., Eisenstein T. K. Correlation of the duration and magnitude of protection against Salmonella infection afforded by various vaccines with antibody titers. Infect Immun. 1980 Feb;27(2):435–443. doi: 10.1128/iai.27.2.435-443.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blanden R. V., Mackaness G. B., Collins F. M. Mechanisms of acquired resistance in mouse typhoid. J Exp Med. 1966 Oct 1;124(4):585–600. doi: 10.1084/jem.124.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cancro M. P., Gerhard W., Klinman N. R. The diversity of the influenza-specific primary B-cell repertoire in BALB/c mice. J Exp Med. 1978 Mar 1;147(3):776–787. doi: 10.1084/jem.147.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins F. M. Effect of specific immune mouse serum on the growth of Salmonella enteritidis in nonvaccinated mice challenged by various routes. J Bacteriol. 1969 Feb;97(2):667–675. doi: 10.1128/jb.97.2.667-675.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins F. M., Mackaness G. B., Blanden R. V. Infection-immunity in experimental salmonellosis. J Exp Med. 1966 Oct 1;124(4):601–619. doi: 10.1084/jem.124.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins F. M., Mackaness G. B. Delayed hypersensitivity and arthus reactivity in relation to host resistance in salmonella-infected mice. J Immunol. 1968 Nov;101(5):830–845. [PubMed] [Google Scholar]
  8. Collins F. M. Vaccines and cell-mediated immunity. Bacteriol Rev. 1974 Dec;38(4):371–402. doi: 10.1128/br.38.4.371-402.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Colwell D. E., Michalek S. M., Briles D. E., Jirillo E., McGhee J. R. Monoclonal antibodies to Salmonella lipopolysaccharide: anti-O-polysaccharide antibodies protect C3H mice against challenge with virulent Salmonella typhimurium. J Immunol. 1984 Aug;133(2):950–957. [PubMed] [Google Scholar]
  10. Duran L. W., Metcalf E. S. Antibody-defective, genetically susceptible CBA/N mice have an altered Salmonella typhimurium-specific B cell repertoire. J Exp Med. 1987 Jan 1;165(1):29–46. doi: 10.1084/jem.165.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eisenstein T. K. Evidence for O antigens as the antigenic determinants in "ribosomal" vaccines prepared from Salmonella. Infect Immun. 1975 Aug;12(2):364–377. doi: 10.1128/iai.12.2.364-377.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Elkins K., Metcalf E. S. Monoclonal antibodies demonstrate multiple epitopes on the O antigens of Salmonella typhimurium LPS. J Immunol. 1984 Oct;133(4):2255–2260. [PubMed] [Google Scholar]
  13. Fuhrman J. A., Cebra J. J. Special features of the priming process for a secretory IgA response. B cell priming with cholera toxin. J Exp Med. 1981 Mar 1;153(3):534–544. doi: 10.1084/jem.153.3.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gearhart P. J., Hurwitz J. L., Cebra J. J. Successive switching of antibody isotypes expressed within the lines of a B-cell clone. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5424–5428. doi: 10.1073/pnas.77.9.5424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gearhart P. J., Sigal N. H., Klinman N. R. Production of antibodies of identical idiotype but diverse immunoglobulin classes by cells derived from a single stimulated B cell. Proc Natl Acad Sci U S A. 1975 May;72(5):1707–1711. doi: 10.1073/pnas.72.5.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gerhard W., Braciale T. J., Klinman N. R. The analysis of the monoclonal immune response to influenza virus. I. Production of monoclonal anti-viral antibodies in vitro. Eur J Immunol. 1975 Oct;5(10):720–725. doi: 10.1002/eji.1830051013. [DOI] [PubMed] [Google Scholar]
  17. Germanier R. Immunity in Experimental Salmonellosis I. Protection Induced by Rough Mutants of Salmonella typhimurium. Infect Immun. 1970 Sep;2(3):309–315. doi: 10.1128/iai.2.3.309-315.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Germanier R. Immunity in experimental salmonellosis. 3. Comparative immunization with viable and heat-inactivated cells of Salmonella typhimurium. Infect Immun. 1972 May;5(5):792–797. doi: 10.1128/iai.5.5.792-797.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Giannella R. A., Broitman S. A., Zamcheck N. Salmonella enteritis. II. Fulminant diarrhea in and effects on the small intestine. Am J Dig Dis. 1971 Nov;16(11):1007–1013. doi: 10.1007/BF02235013. [DOI] [PubMed] [Google Scholar]
  20. Hochadel J. F., Keller K. F. Protective effects of passively transferred immune T- or B-lymphocytes in mice infected with Salmonella typhimurium. J Infect Dis. 1977 May;135(5):813–823. doi: 10.1093/infdis/135.5.813. [DOI] [PubMed] [Google Scholar]
  21. Hormaeche C. E. Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology. 1979 Jun;37(2):311–318. [PMC free article] [PubMed] [Google Scholar]
  22. JENKIN C. R., ROWLEY D., AUZINS I. THE BASIS FOR IMMUNITY TO MOUSE TYPHOID. I. THE CARRIER STATE. Aust J Exp Biol Med Sci. 1964 Apr;42:215–228. doi: 10.1038/icb.1964.23. [DOI] [PubMed] [Google Scholar]
  23. JENKIN C. R., ROWLEY D. PARTIAL PURIFICATION OF THE "PROTECTIVE" ANTIGEN OF SALMONELLA TYPHIMURIUM AND ITS DISTRIBUTION AMONGST VARIOUS STRAINS OF BACTERIA. Aust J Exp Biol Med Sci. 1965 Feb;43:65–78. doi: 10.1038/icb.1965.5. [DOI] [PubMed] [Google Scholar]
  24. Kiefer W., Gransow P., Schmidt G., Westphal O. Salmonellosis in mice: immunization experiments with salmonella-escherichia coli hybrids. Infect Immun. 1976 May;13(5):1517–1518. doi: 10.1128/iai.13.5.1517-1518.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kiyono H., Cooper M. D., Kearney J. F., Mosteller L. M., Michalek S. M., Koopman W. J., McGhee J. R. Isotype specificity of helper T cell clones. Peyer's patch Th cells preferentially collaborate with mature IgA B cells for IgA responses. J Exp Med. 1984 Mar 1;159(3):798–811. doi: 10.1084/jem.159.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klinman N. R., Pickard A. R., Sigal N. H., Gearhart P. J., Metcalf E. S., Pierce S. K. Assessing B cell diversification by antigen receptor and precursor cell analysis. Ann Immunol (Paris) 1976 Jun-Jul;127(3-4):489–502. [PubMed] [Google Scholar]
  27. Klinman N. R. The mechanism of antigenic stimulation of primary and secondary clonal precursor cells. J Exp Med. 1972 Aug 1;136(2):241–260. doi: 10.1084/jem.136.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kuusi N., Nurminen M., Saxén H., Mäkelä P. H. Immunization with major outer membrane protein (porin) preparations in experimental murine salmonellosis: effect of lipopolysaccharide. Infect Immun. 1981 Nov;34(2):328–332. doi: 10.1128/iai.34.2.328-332.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. LANDY M. Enhancement of the immunogenicity of typhoid vaccine by retention of the V1 antigen. Am J Hyg. 1953 Sep;58(2):148–164. doi: 10.1093/oxfordjournals.aje.a119596. [DOI] [PubMed] [Google Scholar]
  30. Lüderitz O., Staub A. M., Westphal O. Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev. 1966 Mar;30(1):192–255. doi: 10.1128/br.30.1.192-255.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mackaness G. B., Blanden R. V., Collins F. M. Host-parasite relations in mouse typhoid. J Exp Med. 1966 Oct 1;124(4):573–583. doi: 10.1084/jem.124.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Metcalf E. S., Klinman N. R. In vitro tolerance induction of bone marrow cells: a marker for B cell maturation. J Immunol. 1977 Jun;118(6):2111–2116. [PubMed] [Google Scholar]
  33. Metcalf E. S., Klinman N. R. In vitro tolerance induction of neonatal murine B cells. J Exp Med. 1976 Jun 1;143(6):1327–1340. doi: 10.1084/jem.143.6.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Metcalf E. S., O'Brien A. D. Characterization of murine antibody response to Salmonella typhimurium by a class-specific solid-phase radioimmunoassay. Infect Immun. 1981 Jan;31(1):33–41. doi: 10.1128/iai.31.1.33-41.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mongini P. K., Paul W. E., Metcalf E. S. IgG subclass, IgE, and IgA anti-trinitrophenyl antibody production within trinitrophenyl-Ficoll-responsive B cell clones. Evidence in support of three distinct switching pathways. J Exp Med. 1983 Jan 1;157(1):69–85. doi: 10.1084/jem.157.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mongini P. K., Paul W. E., Metcalf E. S. T cell regulation of immunoglobulin class expression in the antibody response to trinitrophenyl-ficoll. Evidence for T cell enhancement of the immunoglobulin class switch. J Exp Med. 1982 Mar 1;155(3):884–902. doi: 10.1084/jem.155.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Morris J. A., Wray C., Sojka W. J. The effect of T and B lymphocyte depletion on the protection of mice vaccinated with a Gal E mutant of Salmonella typhimurium. Br J Exp Pathol. 1976 Jun;57(3):354–360. [PMC free article] [PubMed] [Google Scholar]
  38. O'Brien A. D., Rosenstreich D. L., Scher I., Campbell G. H., MacDermott R. P., Formal S. B. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol. 1980 Jan;124(1):20–24. [PubMed] [Google Scholar]
  39. O'Brien A. D., Scher I., Campbell G. H., MacDermott R. P., Formal S. B. Susceptibility of CBA/N mice to infection with Salmonella typhimurium: influence of the X-linked gene controlling B lymphocyte function. J Immunol. 1979 Aug;123(2):720–724. [PubMed] [Google Scholar]
  40. O'Brien A. D., Scher I., Metcalf E. S. Genetically conferred defect in anti-Salmonella antibody formation renders CBA/N mice innately susceptible to Salmonella typhimurium infection. J Immunol. 1981 Apr;126(4):1368–1372. [PubMed] [Google Scholar]
  41. Ornellas E. P., Roantree R. J., Steward J. P. The specificity and importance of humoral antibody in the protection of mice against intraperitoneal challenge with complement-sensitive and complement-resistant Salmonella. J Infect Dis. 1970 Feb;121(2):113–123. doi: 10.1093/infdis/121.2.113. [DOI] [PubMed] [Google Scholar]
  42. Pierce S. K., Cancro M. P., Klinman N. R. Individual antigen-specific T lymphocytes: helper function in enabling the expression of multiple antibody isotypes. J Exp Med. 1978 Sep 1;148(3):759–765. doi: 10.1084/jem.148.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pierce S. K., Klinman N. R. Antibody-specific immunoregulation. J Exp Med. 1977 Aug 1;146(2):509–519. doi: 10.1084/jem.146.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Plant J., Glynn A. A. Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis. 1976 Jan;133(1):72–78. doi: 10.1093/infdis/133.1.72. [DOI] [PubMed] [Google Scholar]
  45. Press J. L., Klinman N. R. Monoclonal production of both IgM and IgG1 antihapten antibody. J Exp Med. 1973 Jul 1;138(1):300–305. doi: 10.1084/jem.138.1.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Roantree R. J. Salmonella O antigens and virulence. Annu Rev Microbiol. 1967;21:443–466. doi: 10.1146/annurev.mi.21.100167.002303. [DOI] [PubMed] [Google Scholar]
  47. Robson H. G., Vas S. I. Resistance of inbred mice to Salmonella typhimurium. J Infect Dis. 1972 Oct;126(4):378–386. doi: 10.1093/infdis/126.4.378. [DOI] [PubMed] [Google Scholar]
  48. Romeo D., Girard A., Rothfield L. Reconstitution of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid. J Mol Biol. 1970 Nov 14;53(3):475–490. doi: 10.1016/0022-2836(70)90078-1. [DOI] [PubMed] [Google Scholar]
  49. Saxén H., Mäkelä O., Svenson S. B. Isotype of protective anti-Salmonella antibodies in experimental mouse salmonellosis. Infect Immun. 1984 Jun;44(3):633–636. doi: 10.1128/iai.44.3.633-636.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Scher I., Ahmed A., Strong D. M., Steinberg A. D., Paul W. E. X-linked B-lymphocyte immune defect in CBA/HN mice. I. Studies of the function and composition of spleen cells. J Exp Med. 1975 Apr 1;141(4):788–803. [PMC free article] [PubMed] [Google Scholar]
  51. Sigal N. H., Klinman N. R. The B-cell clonotype repertoire. Adv Immunol. 1978;26:255–337. doi: 10.1016/s0065-2776(08)60232-1. [DOI] [PubMed] [Google Scholar]
  52. Slack J., Der-Balian G. P., Nahm M., Davie J. M. Subclass restriction of murine antibodies. II. The IgG plaque-forming cell response to thymus-independent type 1 and type 2 antigens in normal mice and mice expressing an X-linked immunodeficiency. J Exp Med. 1980 Apr 1;151(4):853–862. doi: 10.1084/jem.151.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Svenson S. B., Nurminen M., Lindberg A. A. Artificial Salmonella vaccines: O-antigenic oligosaccharide-protein conjugates induce protection against infection with Salmonella typhimurium. Infect Immun. 1979 Sep;25(3):863–872. doi: 10.1128/iai.25.3.863-872.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Teale J. M., Klinman N. R. Tolerance as an active process. Nature. 1980 Nov 27;288(5789):385–387. doi: 10.1038/288385a0. [DOI] [PubMed] [Google Scholar]
  55. Teale J. M., Lafrenz D., Klinman N. R., Strober S. Immunoglobulin class commitment exhibited by B lymphocytes separated according to surface isotype. J Immunol. 1981 May;126(5):1952–1957. [PubMed] [Google Scholar]
  56. Thompson M. A., Cancro M. P. Dynamics of B cell repertoire formation: normal patterns of clonal turnover are altered by ligand interaction. J Immunol. 1982 Dec;129(6):2372–2376. [PubMed] [Google Scholar]
  57. Thompson M. A., Raychaudhuri S., Cancro M. P. Restricted adult clonal profiles induced by neonatal immunization. Influence of suppressor T cells. J Exp Med. 1983 Jul 1;158(1):112–125. doi: 10.1084/jem.158.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Virelizier J. L., Postlethwaite R., Schild G. C., Allison A. C. Antibody responses to antigenic determinants of influenza virus hemagglutinin. I. Thymus dependence of antibody formation and thymus independence of immunological memory. J Exp Med. 1974 Dec 1;140(6):1559–1570. doi: 10.1084/jem.140.6.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wylie D. E., Klinman N. R. The murine B cell repertoire responsive to an influenza-infected syngeneic cell line. J Immunol. 1981 Jul;127(1):194–198. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES