Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Feb 1;165(2):459–470. doi: 10.1084/jem.165.2.459

A synthetic peptide induces long-term protection from lethal infection with herpes simplex virus 2

PMCID: PMC2188522  PMID: 3029270

Abstract

Immunization against viral pathogens is generally directed toward the induction of virus neutralizing antibody (VNA) and the maintenance of the potential for a second-set (IgG) response. Indeed, an elevated level of specific antibody is considered a reliable clinical indicator that a state of immunity exists in the host. However, in the case of herpes simplex virus (HSV), the presence of circulating VNA does not necessarily correlate with protection. Thus, it has been found that secondary infections occur in individuals even with high neutralizing titers to HSV, suggesting that antibody to the virus may be useless or even deleterious. In consideration of these facts, we were interested in inducing a T cell response to HSV. We had already shown that synthetic peptides corresponding to the NH3-terminal region of the glycoprotein D (gD) molecule of HSV could induce a strong T cell response when injected into mice, but did not, by themselves, confer protection. In this report, we examined the ability of peptides, covalently coupled to palmitic acid and incorporated into liposomes, to induce virus-specific T cell responses that confer protection against a lethal challenge of HSV-2. We have demonstrated that long-term protective immunity is achieved with a single immunization in the absence of neutralizing antibody when antigen is presented in this form. Furthermore, T cells but not serum from such immune mice can adoptively transfer this protection.

Full Text

The Full Text of this article is available as a PDF (848.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balachandran N., Bacchetti S., Rawls W. E. Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun. 1982 Sep;37(3):1132–1137. doi: 10.1128/iai.37.3.1132-1137.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumhüter S., Bron C., Corradin G. Different antigen-presenting cells differ in their capacity to induce lymphokine production and proliferation of an apo-cytochrome c-specific T cell clone. J Immunol. 1985 Aug;135(2):989–994. [PubMed] [Google Scholar]
  3. Ben-Nun A., Cohen I. R. Spontaneous remission and acquired resistance to autoimmune encephalomyelitis (EAE) are associated with suppression of T cell reactivity: suppressed EAE effector T cells recovered as T cell lines. J Immunol. 1982 Mar;128(3):1450–1457. [PubMed] [Google Scholar]
  4. Bruce J., Symington F. W., McKearn T. J., Sprent J. A monoclonal antibody discriminating between subsets of T and B cells. J Immunol. 1981 Dec;127(6):2496–2501. [PubMed] [Google Scholar]
  5. Chesnut R. W., Colon S. M., Grey H. M. Antigen presentation by normal B cells, B cell tumors, and macrophages: functional and biochemical comparison. J Immunol. 1982 Apr;128(4):1764–1768. [PubMed] [Google Scholar]
  6. Cohen G. H., Dietzschold B., Ponce de Leon M., Long D., Golub E., Varrichio A., Pereira L., Eisenberg R. J. Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates the production of neutralizing antibody. J Virol. 1984 Jan;49(1):102–108. doi: 10.1128/jvi.49.1.102-108.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coon J., Hunter R. Selective induction of delayed hypersensitivity by a lipid conjugated protein antigen which is localized in thymus dependent lymphoid tissue. J Immunol. 1973 Jan;110(1):183–190. [PubMed] [Google Scholar]
  8. Corradin G., Etlinger H. M., Chiller J. M. Lymphocyte specificity to protein antigens. I. Characterization of the antigen-induced in vitro T cell-dependent proliferative response with lymph node cells from primed mice. J Immunol. 1977 Sep;119(3):1048–1053. [PubMed] [Google Scholar]
  9. Dailey M. O., Hunter R. L. The role of lipid in the induction of hapten-specific delayed hypersensitivity and contact sensitivity. J Immunol. 1974 Apr;112(4):1526–1534. [PubMed] [Google Scholar]
  10. Dietzschold B., Eisenberg R. J., Ponce de Leon M., Golub E., Hudecz F., Varrichio A., Cohen G. H. Fine structure analysis of type-specific and type-common antigenic sites of herpes simplex virus glycoprotein D. J Virol. 1984 Nov;52(2):431–435. doi: 10.1128/jvi.52.2.431-435.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dix R. D., Pereira L., Baringer J. R. Use of monoclonal antibody directed against herpes simplex virus glycoproteins to protect mice against acute virus-induced neurological disease. Infect Immun. 1981 Oct;34(1):192–199. doi: 10.1128/iai.34.1.192-199.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisenberg R. J., Cerini C. P., Heilman C. J., Joseph A. D., Dietzschold B., Golub E., Long D., Ponce de Leon M., Cohen G. H. Synthetic glycoprotein D-related peptides protect mice against herpes simplex virus challenge. J Virol. 1985 Dec;56(3):1014–1017. doi: 10.1128/jvi.56.3.1014-1017.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Finberg R., Mescher M., Burakoff S. J. The induction of virus-specific cytotoxic T lymphocytes with solubilized viral and membrane proteins. J Exp Med. 1978 Dec 1;148(6):1620–1627. doi: 10.1084/jem.148.6.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hackett C. J., Taylor P. M., Askonas B. A. Stimulation of cytotoxic T cells by liposomes containing influenza virus or its components. Immunology. 1983 Jun;49(2):255–263. [PMC free article] [PubMed] [Google Scholar]
  15. Heber-Katz E., Hollosi M., Dietzschold B., Hudecz F., Fasman G. D. The T cell response to the glycoprotein D of the herpes simplex virus: the significance of antigen conformation. J Immunol. 1985 Aug;135(2):1385–1390. [PubMed] [Google Scholar]
  16. Hopp T. P. Immunogenicity of a synthetic HBsAg peptide: enhancement by conjugation to a fatty acid carrier. Mol Immunol. 1984 Jan;21(1):13–16. doi: 10.1016/0161-5890(84)90084-1. [DOI] [PubMed] [Google Scholar]
  17. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  18. Lawman M. J., Naylor P. T., Huang L., Courtney R. J., Rouse B. T. Cell-mediated immunity to herpes simplex virus: induction of cytotoxic T lymphocyte responses by viral antigens incorporated into liposomes. J Immunol. 1981 Jan;126(1):304–308. [PubMed] [Google Scholar]
  19. Loh D., Ross A. H., Hale A. H., Baltimore D., Eisen H. N. Synthetic phospholipid vesicles containing a purified viral antigen and cell membrane proteins stimulate the development of cytotoxic T lymphocytes. J Exp Med. 1979 Nov 1;150(5):1067–1074. doi: 10.1084/jem.150.5.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Long D., Madara T. J., Ponce de Leon M., Cohen G. H., Montgomery P. C., Eisenberg R. J. Glycoprotein D protects mice against lethal challenge with herpes simplex virus types 1 and 2. Infect Immun. 1984 Feb;43(2):761–764. doi: 10.1128/iai.43.2.761-764.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Metcalf J. F., Kaufman H. E. Herpetic stromal keratitis-evidence for cell-mediated immunopathogenesis. Am J Ophthalmol. 1976 Dec;82(6):827–834. doi: 10.1016/0002-9394(76)90057-x. [DOI] [PubMed] [Google Scholar]
  22. Morein B., Barz D., Koszinowski U., Schirrmacher V. Integration of a virus membrane protein into the lipid bilayer of target cells as a prerequisite for immune cytolysis. Specific cytolysis after virosome-target cell fusion. J Exp Med. 1979 Dec 1;150(6):1383–1398. doi: 10.1084/jem.150.6.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naraqi S., Jackson G. G., Jonasson O. M. Viremia with herpes simplex type 1 in adults. Four nonfatal cases, one with features of chicken pox. Ann Intern Med. 1976 Aug;85(2):165–169. doi: 10.7326/0003-4819-85-2-165. [DOI] [PubMed] [Google Scholar]
  24. Oldstone M. B. Virus neutralization and virus-induced immune complex disease. Virus-antibody union resulting in immunoprotection or immunologic injury--two sides of the same coin. Prog Med Virol. 1975;19:84–119. [PubMed] [Google Scholar]
  25. Ozato K., Mayer N., Sachs D. H. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J Immunol. 1980 Feb;124(2):533–540. [PubMed] [Google Scholar]
  26. Pass R. F., Whitley R. J., Whelchel J. D., Diethelm A. G., Reynolds D. W., Alford C. A. Identification of patients with increased risk of infection with herpes simplex virus after renal transplantation. J Infect Dis. 1979 Oct;140(4):487–492. doi: 10.1093/infdis/140.4.487. [DOI] [PubMed] [Google Scholar]
  27. Price R., Chernik N. L., Horta-Barbosa L., Posner J. B. Herpes simplex encephalitis in an anergic patient. Am J Med. 1973 Feb;54(2):222–228. doi: 10.1016/0002-9343(73)90226-x. [DOI] [PubMed] [Google Scholar]
  28. Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
  29. Tite J. P., Janeway C. A., Jr Antigen-dependent selection of B lymphoma cells varying in Ia density by cloned antigen-specific L3T4a+ T cells: a possible in vitro model for B cell adaptive differentiation. J Mol Cell Immunol. 1984;1(4):253–265. [PubMed] [Google Scholar]
  30. Watson R. J. DNA sequence of the Herpes simplex virus type 2 glycoprotein D gene. Gene. 1983 Dec;26(2-3):307–312. doi: 10.1016/0378-1119(83)90203-2. [DOI] [PubMed] [Google Scholar]
  31. Wilson L. A., Karabin J. M., Smith J. W., Dawson D., Scott D. W. Modified-self-induced modulation of the immune response to herpes simplex virus: effect on antibody formation, cytotoxic T lymphocyte induction, and survival. J Immunol. 1984 Mar;132(3):1522–1528. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES