Abstract
The efficacy and the mode of action of pretransplant transfusion with class I major histocompatibility complex (MHC)-disparate splenocytes in establishing a state of peripheral tolerance in adult mice is analyzed. Adult mice injected intravenously with a critical number of approximately 5 x 10(7) allogenic splenocytes accept skin grafts and develop chimerism in the peripheral lymphatic tissues, but not in thymus and bone marrow. In parallel, a split tolerance evolves: the frequency of class I MHC-reactive Lyt-2+ cytotoxic T lymphocyte precursor (CTL-p)- and interleukin 2 (IL-2)-producing T cells falls off in the peripheral lymphoid tissue, but remains unaltered intrathymically. In particular, high affinity CTL-p become clonally undetectable. In vivo generation of tolerant cells is cyclosporin A resistant, but dependent on recipient L3T4+ T cells. Loss of Lyt-2+ CTL- p- and IL-2-producing T cell precursors is not due to active suppression, but is caused by clonal anergy. Donor-derived chimeric cells positively selected 7 d after intravenous transfusion exhibit in vitro the hallmarks of veto cells, i.e., paralyze CTL-p reactive to donor-type class I MHC alloantigens. We conclude that the peripheral (split) tolerance induced in vivo by pretransplant transfusion operates because donor-type cells develop in vivo efficiently into "veto cells," which in turn induce a state of clonal anergy within antigen-reactive Lyt-2+ T lymphocytes.
Full Text
The Full Text of this article is available as a PDF (837.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auchincloss H., Jr, Sachs D. H. Mechanisms of tolerance in murine radiation bone marrow chimeras. I. Nonspecific suppression of alloreactivity by spleen cells from early, but not late, chimeras. Transplantation. 1983 Oct;36(4):436–441. doi: 10.1097/00007890-198310000-00016. [DOI] [PubMed] [Google Scholar]
- Brent L., Hansen J. A., Kilshaw P. J., Thomas A. V. Specific unresponsiveness to skin allografts in mice. I. Properties of tissue extracts and their synergistic effect with antilymphocytic serum. Transplantation. 1973 Jan;15(1):160–171. doi: 10.1097/00007890-197301000-00023. [DOI] [PubMed] [Google Scholar]
- Cobbold S., Martin G., Waldmann H. Monoclonal antibodies for the prevention of graft-versus-host disease and marrow graft rejection. The depletion of T cell subsets in vitro and in vivo. Transplantation. 1986 Sep;42(3):239–247. doi: 10.1097/00007890-198609000-00003. [DOI] [PubMed] [Google Scholar]
- Faustman D., Lacy P., Davie J., Hauptfeld V. Prevention of allograft rejection by immunization with donor blood depleted of Ia-bearing cells. Science. 1982 Jul 9;217(4555):157–158. doi: 10.1126/science.6806903. [DOI] [PubMed] [Google Scholar]
- Fink P. J., Rammensee H. G., Benedetto J. D., Staerz U. D., Lefrancois L., Bevan M. J. Studies on the mechanism of suppression of primary cytotoxic responses by cloned cytotoxic T lymphocytes. J Immunol. 1984 Oct;133(4):1769–1774. [PubMed] [Google Scholar]
- Fink P. J., Rammensee H. G., Bevan M. J. Cloned cytolytic T cells can suppress primary cytotoxic responses directed against them. J Immunol. 1984 Oct;133(4):1775–1781. [PubMed] [Google Scholar]
- Fink P. J., Shimonkevitz R. P., Bevan M. J. Veto cells. Annu Rev Immunol. 1988;6:115–137. doi: 10.1146/annurev.iy.06.040188.000555. [DOI] [PubMed] [Google Scholar]
- Heeg K., Deusch K., Solbach W., Bunjes D., Wagner H. Frequency analysis of cyclosporine-sensitive cytotoxic T lymphocyte precursors. Transplantation. 1984 Nov;38(5):532–536. doi: 10.1097/00007890-198411000-00019. [DOI] [PubMed] [Google Scholar]
- Heeg K., Gillis S., Wagner H. IL-4 bypasses the immune suppressive effect of cyclosporin A during the in vitro induction of murine cytotoxic T lymphocytes. J Immunol. 1988 Oct 1;141(7):2330–2334. [PubMed] [Google Scholar]
- Heeg K., Reimann J., Kabelitz D., Hardt C., Wagner H. A rapid colorimetric assay for the determination of IL-2-producing helper T cell frequencies. J Immunol Methods. 1985 Mar 18;77(2):237–246. doi: 10.1016/0022-1759(85)90036-5. [DOI] [PubMed] [Google Scholar]
- Heeg K., Steeg C., Schmitt J., Wagner H. Frequency analysis of class I MHC-reactive Lyt-2+ and class II MHC-reactive L3T4+ IL 2-secreting T lymphocytes. J Immunol. 1987 Jun 15;138(12):4121–4127. [PubMed] [Google Scholar]
- Heeg K., Steeg C., Wagner H. L3T4+ T-cell-independent reactivity of Lyt2+ T cells in vivo. Cell Immunol. 1988 Jan;111(1):148–157. doi: 10.1016/0008-8749(88)90059-7. [DOI] [PubMed] [Google Scholar]
- Heeg K., Wagner H. Analysis of immunological tolerance to major histocompatibility complex antigens. I. High frequencies of tolerogen-specific cytotoxic T lymphocyte precursors in mice neonatally tolerized to class I major histocompatibility complex antigens. Eur J Immunol. 1985 Jan;15(1):25–30. doi: 10.1002/eji.1830150106. [DOI] [PubMed] [Google Scholar]
- Ildstad S. T., Sachs D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984 Jan 12;307(5947):168–170. doi: 10.1038/307168a0. [DOI] [PubMed] [Google Scholar]
- Kast W. M., Van Twuyver E., Mooijaart R. J., Verveld M., Kamphuis A. G., Melief C. J., De Waal L. P. Mechanism of skin allograft enhancement across an H-2 class I mutant difference. Evidence for involvement of veto cells. Eur J Immunol. 1988 Dec;18(12):2105–2108. doi: 10.1002/eji.1830181238. [DOI] [PubMed] [Google Scholar]
- Kisielow P., Blüthmann H., Staerz U. D., Steinmetz M., von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 1988 Jun 23;333(6175):742–746. doi: 10.1038/333742a0. [DOI] [PubMed] [Google Scholar]
- Krönke M., Leonard W. J., Depper J. M., Arya S. K., Wong-Staal F., Gallo R. C., Waldmann T. A., Greene W. C. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5214–5218. doi: 10.1073/pnas.81.16.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lafferty K. J., Andrus L., Prowse S. J. Role of lymphokine and antigen in the control of specific T cell responses. Immunol Rev. 1980;51:279–314. doi: 10.1111/j.1600-065x.1980.tb00325.x. [DOI] [PubMed] [Google Scholar]
- MacDonald H. R., Nabholz M. T-cell activation. Annu Rev Cell Biol. 1986;2:231–253. doi: 10.1146/annurev.cb.02.110186.001311. [DOI] [PubMed] [Google Scholar]
- MacDonald H. R., Pedrazzini T., Schneider R., Louis J. A., Zinkernagel R. M., Hengartner H. Intrathymic elimination of Mlsa-reactive (V beta 6+) cells during neonatal tolerance induction to Mlsa-encoded antigens. J Exp Med. 1988 Jun 1;167(6):2005–2010. doi: 10.1084/jem.167.6.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald H. R., Thiernesse N., Cerottini J. C. Inhibition of T cell-mediated cytolysis by monoclonal antibodies directed against Lyt-2: heterogeneity of inhibition at the clonal level. J Immunol. 1981 May;126(5):1671–1675. [PubMed] [Google Scholar]
- Madsen J. C., Superina R. A., Wood K. J., Morris P. J. Immunological unresponsiveness induced by recipient cells transfected with donor MHC genes. Nature. 1988 Mar 10;332(6160):161–164. doi: 10.1038/332161a0. [DOI] [PubMed] [Google Scholar]
- Many A., Schwartz R. S. On the mechanism of immunological tolerance in cyclophosphamide-treated mice. Clin Exp Immunol. 1970 Jan;6(1):87–99. [PMC free article] [PubMed] [Google Scholar]
- Martin D. R., Miller R. G. In vivo administration of histoincompatible lymphocytes leads to rapid functional deletion of cytotoxic T lymphocyte precursors. J Exp Med. 1989 Sep 1;170(3):679–690. doi: 10.1084/jem.170.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayumi H., Himeno K., Shin T., Nomoto K. Drug-induced tolerance to allografts in mice. IV. Mechanisms and kinetics of cyclophosphamide-induced tolerance. Transplantation. 1985 Feb;39(2):209–215. doi: 10.1097/00007890-198502000-00019. [DOI] [PubMed] [Google Scholar]
- Miller R. G. An immunological suppressor cell inactivating cytotoxic T-lymphocyte precursor cells recognizing it. Nature. 1980 Oct 9;287(5782):544–546. doi: 10.1038/287544a0. [DOI] [PubMed] [Google Scholar]
- Miller R. G., Derry H. A cell population in nu/nu spleen can prevent generation of cytotoxic lymphocytes by normal spleen cells against self antigens of the nu/nu spleen. J Immunol. 1979 Apr;122(4):1502–1509. [PubMed] [Google Scholar]
- Mueller D. L., Jenkins M. K., Schwartz R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–480. doi: 10.1146/annurev.iy.07.040189.002305. [DOI] [PubMed] [Google Scholar]
- Muraoka S., Ehman D. L., Miller R. G. Irreversible inactivation of activated cytotoxic T lymphocyte precursor cells by "anti-self" suppressor cells present in murine bone marrow T cell colonies. Eur J Immunol. 1984 Nov;14(11):1010–1016. doi: 10.1002/eji.1830141109. [DOI] [PubMed] [Google Scholar]
- Nossal G. J. Cellular mechanisms of immunologic tolerance. Annu Rev Immunol. 1983;1:33–62. doi: 10.1146/annurev.iy.01.040183.000341. [DOI] [PubMed] [Google Scholar]
- Nossal G. J., Pike B. L. Functional clonal deletion in immunological tolerance to major histocompatibility complex antigens. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3844–3847. doi: 10.1073/pnas.78.6.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rammensee H. G., Bevan M. J. Mutual tolerization of histoincompatible lymphocytes. Eur J Immunol. 1987 Jun;17(6):893–895. doi: 10.1002/eji.1830170625. [DOI] [PubMed] [Google Scholar]
- Rammensee H. G., Fink P. J., Bevan M. J. Functional clonal deletion of class I-specific cytotoxic T lymphocytes by veto cells that express antigen. J Immunol. 1984 Nov;133(5):2390–2396. [PubMed] [Google Scholar]
- Rammensee H. G., Hügin D. Masking of veto function in vivo by activated CD4+ T lymphocytes. Eur J Immunol. 1989 Apr;19(4):643–648. doi: 10.1002/eji.1830190411. [DOI] [PubMed] [Google Scholar]
- Rammensee H. G., Kroschewski R., Frangoulis B. Clonal anergy induced in mature V beta 6+ T lymphocytes on immunizing Mls-1b mice with Mls-1a expressing cells. Nature. 1989 Jun 15;339(6225):541–544. doi: 10.1038/339541a0. [DOI] [PubMed] [Google Scholar]
- Sano S., Suda T., Qian J. H., Sato S., Ikegami R., Hamaoka T., Fujiwara H. Abrogation of the capacity of delayed-type hypersensitivity responses to alloantigens by intravenous injection of neuraminidase-treated allogeneic cells. J Immunol. 1987 Dec 1;139(11):3652–3659. [PubMed] [Google Scholar]
- Seaman W. E., Wofsy D. Selective manipulation of the immune response in vivo by monoclonal antibodies. Annu Rev Med. 1988;39:231–241. doi: 10.1146/annurev.me.39.020188.001311. [DOI] [PubMed] [Google Scholar]
- Singal D. P., Ludwin D., Blajchman M. A. Blood transfusion and renal transplantation. Br J Haematol. 1985 Dec;61(4):595–602. doi: 10.1111/j.1365-2141.1985.tb02872.x. [DOI] [PubMed] [Google Scholar]
- Slavin S., Strober S., Fuks Z., Kaplan H. S. Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long-term survival of allogeneic bone marrow and skin grafts. J Exp Med. 1977 Jul 1;146(1):34–48. doi: 10.1084/jem.146.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stockinger B. Cytotoxic T-cell precursors revealed in neonatally tolerant mice. Proc Natl Acad Sci U S A. 1984 Jan;81(1):220–223. doi: 10.1073/pnas.81.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stockinger B., Darjes H., Krammer P. H. Adsorption on B cell hybridomas removes suppressor cells from spleen cells of neonatally tolerized mice. Eur J Immunol. 1986 Mar;16(3):301–305. doi: 10.1002/eji.1830160317. [DOI] [PubMed] [Google Scholar]
- White J., Herman A., Pullen A. M., Kubo R., Kappler J. W., Marrack P. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 1989 Jan 13;56(1):27–35. doi: 10.1016/0092-8674(89)90980-x. [DOI] [PubMed] [Google Scholar]
