Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Apr 1;165(4):970–987. doi: 10.1084/jem.165.4.970

Variable region sequences of murine IgM anti-IgG monoclonal autoantibodies (rheumatoid factors). II. Comparison of hybridomas derived by lipopolysaccharide stimulation and secondary protein immunization

PMCID: PMC2188567  PMID: 3494096

Abstract

We have obtained the complete variable region mRNA sequences of 11 LPS- derived and 14 secondary immunization-derived monoclonal IgM anti-IgG antibodies (rheumatoid factors, RFs). A comparative analysis of these sequences showed that monoclonal RFs derived after polyclonal activation are structurally very similar to RFs derived after secondary protein immunization. This study was undertaken to evaluate the potential relationship between two previously described phenomena: (a) during a secondary response to a protein antigen, RF is produced in quantities that equal or exceed the immunogen-specific antibody; and (b) the frequency of B cells that make RF after polyclonal activation is quite high; 3-10%. It has been unclear whether LPS-stimulated cells that produce IgM anti-IgG that is detected by an in vitro assay are related to the cells that produce RF after in vivo stimulation. The similarity of the antigen receptors found in the two types of RF, however, suggests that most or all of the RF-producing B cells detected after LPS stimulation would also be stimulated during the secondary immune response. Thus, the presence of relatively large number of B cells that can make RF after nonspecific stimulation provides an explanation for the magnitude of RF production accompanying the secondary immune response.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bothwell A. L., Paskind M., Reth M., Imanishi-Kari T., Rajewsky K., Baltimore D. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region. Cell. 1981 Jun;24(3):625–637. doi: 10.1016/0092-8674(81)90089-1. [DOI] [PubMed] [Google Scholar]
  2. Brodeur P. H., Riblet R. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. Eur J Immunol. 1984 Oct;14(10):922–930. doi: 10.1002/eji.1830141012. [DOI] [PubMed] [Google Scholar]
  3. Chen P. P., Gõni F., Houghten R. A., Fong S., Goldfien R., Vaughan J. H., Frangione B., Carson D. A. Characterization of human rheumatoid factors with seven antiidiotypes induced by synthetic hypervariable region peptides. J Exp Med. 1985 Aug 1;162(2):487–500. doi: 10.1084/jem.162.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clarke S. H., Huppi K., Ruezinsky D., Staudt L., Gerhard W., Weigert M. Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J Exp Med. 1985 Apr 1;161(4):687–704. doi: 10.1084/jem.161.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarkson A. B., Jr, Mellow G. H. Rheumatoid factor-like immunoglobulin M protects previously uninfected rat pups and dams from Trypanosoma lewisi. Science. 1981 Oct 9;214(4517):186–188. doi: 10.1126/science.7025211. [DOI] [PubMed] [Google Scholar]
  6. Coulie P. G., Van Snick J. Rheumatoid factor (RF) production during anamnestic immune responses in the mouse. III. Activation of RF precursor cells is induced by their interaction with immune complexes and carrier-specific helper T cells. J Exp Med. 1985 Jan 1;161(1):88–97. doi: 10.1084/jem.161.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coulie P., Van Snick J. Rheumatoid factors and secondary immune responses in the mouse. II. Incidence, kinetics and induction mechanisms. Eur J Immunol. 1983 Nov;13(11):895–899. doi: 10.1002/eji.1830131107. [DOI] [PubMed] [Google Scholar]
  8. Davies D. R., Metzger H. Structural basis of antibody function. Annu Rev Immunol. 1983;1:87–117. doi: 10.1146/annurev.iy.01.040183.000511. [DOI] [PubMed] [Google Scholar]
  9. Dildrop R., Krawinkel U., Winter E., Rajewsky K. VH-gene expression in murine lipopolysaccharide blasts distributes over the nine known VH-gene groups and may be random. Eur J Immunol. 1985 Nov;15(11):1154–1156. doi: 10.1002/eji.1830151117. [DOI] [PubMed] [Google Scholar]
  10. Gibson D. M. Evidence for 65 electrophoretically distinct groups of light chains in BALB/c and NZB myelomas. Mol Immunol. 1984 May;21(5):421–432. doi: 10.1016/0161-5890(84)90040-3. [DOI] [PubMed] [Google Scholar]
  11. Gough N. M., Bernard O. Sequences of the joining region genes for immunoglobulin heavy chains and their role in generation of antibody diversity. Proc Natl Acad Sci U S A. 1981 Jan;78(1):509–513. doi: 10.1073/pnas.78.1.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goverman J., Hunkapiller T., Hood L. A speculative view of the multicomponent nature of T cell antigen recognition. Cell. 1986 May 23;45(4):475–484. doi: 10.1016/0092-8674(86)90279-5. [DOI] [PubMed] [Google Scholar]
  13. Hum W. T., Lazure C., Lavigueur A., MacLean S. J., Gibson D. M. Structure and genetic control of V kappa-1 light chains. Ann Immunol (Paris) 1984 Jan-Feb;135C(1):163–168. doi: 10.1016/s0769-2625(84)80027-6. [DOI] [PubMed] [Google Scholar]
  14. Joho R., Gershenfeld H., Weissman I. L. Evolution of a multigene family of V kappa germ line genes. EMBO J. 1984 Jan;3(1):185–191. doi: 10.1002/j.1460-2075.1984.tb01782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Julius M. A., McKean D. J., Potter M., Weigert M. Expression of kappa chains of the V kappa 21 group in Mus musculus and related species. Mol Immunol. 1981 Jan;18(1):11–17. doi: 10.1016/0161-5890(81)90043-2. [DOI] [PubMed] [Google Scholar]
  16. Kurosawa Y., Tonegawa S. Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments. J Exp Med. 1982 Jan 1;155(1):201–218. doi: 10.1084/jem.155.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Manser T., Huang S. Y., Gefter M. L. Influence of clonal selection on the expression of immunoglobulin variable region genes. Science. 1984 Dec 14;226(4680):1283–1288. doi: 10.1126/science.6334361. [DOI] [PubMed] [Google Scholar]
  18. Max E. E., Seidman J. G., Leder P. Sequences of five potential recombination sites encoded close to an immunoglobulin kappa constant region gene. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3450–3454. doi: 10.1073/pnas.76.7.3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nemazee D. A. Immune complexes can trigger specific, T cell-dependent, autoanti-IgG antibody production in mice. J Exp Med. 1985 Jan 1;161(1):242–256. doi: 10.1084/jem.161.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nemazee D. A., Sato V. L. Induction of rheumatoid antibodies in the mouse. Regulated production of autoantibody in the secondary humoral response. J Exp Med. 1983 Aug 1;158(2):529–545. doi: 10.1084/jem.158.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Potter M., Newell J. B., Rudikoff S., Haber E. Classification of mouse VK groups based on the partial amino acid sequence to the first invariant tryptophan: impact of 14 new sequences from IgG myeloma proteins. Mol Immunol. 1982 Dec;19(12):1619–1630. doi: 10.1016/0161-5890(82)90273-5. [DOI] [PubMed] [Google Scholar]
  22. Sharon J., Gefter M. L., Manser T., Ptashne M. Site-directed mutagenesis of an invariant amino acid residue at the variable-diversity segments junction of an antibody. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2628–2631. doi: 10.1073/pnas.83.8.2628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shlomchik M. J., Nemazee D. A., Sato V. L., Van Snick J., Carson D. A., Weigert M. G. Variable region sequences of murine IgM anti-IgG monoclonal autoantibodies (rheumatoid factors). A structural explanation for the high frequency of IgM anti-IgG B cells. J Exp Med. 1986 Aug 1;164(2):407–427. doi: 10.1084/jem.164.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stassin V., Coulie P. G., Birshtein B. K., Secher D. S., Van Snick J. Determinants recognized by murine rheumatoid factors: molecular localization using a panel of mouse myeloma variant immunoglobulins. J Exp Med. 1983 Nov 1;158(5):1763–1768. doi: 10.1084/jem.158.5.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Snick J. L., Coulie P. Monoclonal anti-IgG autoantibodies derived from lipopolysaccharide-activated spleen cells of 129/Sv mice. J Exp Med. 1982 Jan 1;155(1):219–230. doi: 10.1084/jem.155.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weigert M., Riblet R. Genetic control of antibody variable regions. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):837–846. doi: 10.1101/sqb.1977.041.01.093. [DOI] [PubMed] [Google Scholar]
  27. Welch M. J., Fong S., Vaughan J., Carson D. Increased frequency of rheumatoid factor precursor B lymphocytes after immunization of normal adults with tetanus toxoid. Clin Exp Immunol. 1983 Feb;51(2):299–304. [PMC free article] [PubMed] [Google Scholar]
  28. Wu T. T., Kabat E. A. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970 Aug 1;132(2):211–250. doi: 10.1084/jem.132.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES