Abstract
Sn-protoporphyrin (SnPP) suppresses generation of 14CO from hepatic heme labeled with delta-aminolevulinic acid (5-[14C]ALA) or from infused [14C]hemin in rats. SnPP administered 1 h before administration of 5-[14C]ALA virtually abolished the peak output of 14CO occurring 2-3 h after injection of this heme precursor, and during the succeeding 12 h reduced 14CO excretion by approximately 61% compared with controls. When [14C]hemin was infused, SnPP diminished 14CO excretion by approximately 50%. These findings, derived from experiments using radiolabeled endogenous and exogenous heme sources, establish conclusively that the synthetic metalloporphyrin SnPP inhibits the oxidative degradation of heme in the intact animal.
Full Text
The Full Text of this article is available as a PDF (408.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson K. E., Simionatto C. S., Drummond G. S., Kappas A. Disposition of tin-protoporphyrin and suppression of hyperbilirubinemia in humans. Clin Pharmacol Ther. 1986 May;39(5):510–520. doi: 10.1038/clpt.1986.88. [DOI] [PubMed] [Google Scholar]
- Anderson K. E., Simionatto C. S., Drummond G. S., Kappas A. Tissue distribution and disposition of tin-protoporphyrin, a potent competitive inhibitor of heme oxygenase. J Pharmacol Exp Ther. 1984 Feb;228(2):327–333. [PubMed] [Google Scholar]
- Drummond G. S., Kappas A. Chemoprevention of neonatal jaundice: potency of tin-protoporphyrin in an animal model. Science. 1982 Sep 24;217(4566):1250–1252. doi: 10.1126/science.6896768. [DOI] [PubMed] [Google Scholar]
- Drummond G. S., Kappas A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6466–6470. doi: 10.1073/pnas.78.10.6466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibrahim G. W., Schwartz S., Watson C. J. Early labeling of bilirubin from glycine and delta-aminolevulinic acid in bile fistula dogs, with special reference to stimulated versus suppressed erythropoiesis. Metabolism. 1966 Dec;15(12):1129–1139. doi: 10.1016/0026-0495(66)90103-x. [DOI] [PubMed] [Google Scholar]
- Kappas A., Drummond G. S. Control of heme metabolism with synthetic metalloporphyrins. J Clin Invest. 1986 Feb;77(2):335–339. doi: 10.1172/JCI112309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kappas A., Drummond G. S., Simionatto C. S., Anderson K. E. Control of heme oxygenase and plasma levels of bilirubin by a synthetic heme analogue, tin-protoporphyrin. Hepatology. 1984 Mar-Apr;4(2):336–341. doi: 10.1002/hep.1840040227. [DOI] [PubMed] [Google Scholar]
- Kappas A., Simionatto C. S., Drummond G. S., Sassa S., Anderson K. E. The liver excretes large amounts of heme into bile when heme oxygenase is inhibited competitively by Sn-protoporphyrin. Proc Natl Acad Sci U S A. 1985 Feb;82(3):896–900. doi: 10.1073/pnas.82.3.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landaw S. A., Callahan E. W., Jr, Schmid R. Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide. J Clin Invest. 1970 May;49(5):914–925. doi: 10.1172/JCI106311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milleville G. S., Levitt M. D., Engel R. R. Tin protoporphyrin inhibits carbon monoxide production in adult mice. Pediatr Res. 1985 Jan;19(1):94–96. doi: 10.1203/00006450-198501000-00025. [DOI] [PubMed] [Google Scholar]
- Posselt A. M., Kwong L. K., Vreman H. J., Stevenson D. K. Suppression of carbon monoxide excretion rate by tin protoporphyrin. Am J Dis Child. 1986 Feb;140(2):147–150. doi: 10.1001/archpedi.1986.02140160065034. [DOI] [PubMed] [Google Scholar]
- Robinson S. H., Owen C. A., Jr, Flock E. V., Schmid R. Bilirubin formation in the liver from nonhemoglobin sources. Experiments with isolated, perfused rat liver. Blood. 1965 Dec;26(6):823–829. [PubMed] [Google Scholar]
- Robinson S. H., Tsong M., Brown B. W., Schmid R. The sources of bile pigment in the rat: studies of the "early labeled" fraction. J Clin Invest. 1966 Oct;45(10):1569–1586. doi: 10.1172/JCI105463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodkey F. L., Collison H. A., O'Neal J. D. Carbon monoxide and methane production in rats, guinea pigs, and germ-free rats. J Appl Physiol. 1972 Aug;33(2):256–260. doi: 10.1152/jappl.1972.33.2.256. [DOI] [PubMed] [Google Scholar]
- Simionatto C. S., Anderson K. E., Drummond G. S., Kappas A. Studies on the mechanism of Sn-protoporphyrin suppression of hyperbilirubinemia. Inhibition of heme oxidation and bilirubin production. J Clin Invest. 1985 Feb;75(2):513–521. doi: 10.1172/JCI111727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WESTLAKE D. W., ROXBURGH J. M., TALBOT G. Microbial production of carbon monoxide from flavonoids. Nature. 1961 Feb 11;189:510–511. doi: 10.1038/189510a0. [DOI] [PubMed] [Google Scholar]
- Wolff D. G. The formation of carbon monoxide during peroxidation of microsomal lipids. Biochem Biophys Res Commun. 1976 Dec 20;73(4):850–857. doi: 10.1016/0006-291x(76)90199-6. [DOI] [PubMed] [Google Scholar]
- Yoshinaga T., Sassa S., Kappas A. Purification and properties of bovine spleen heme oxygenase. Amino acid composition and sites of action of inhibitors of heme oxidation. J Biol Chem. 1982 Jul 10;257(13):7778–7785. [PubMed] [Google Scholar]