Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Oct 1;172(4):1025–1033. doi: 10.1084/jem.172.4.1025

Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages

PMCID: PMC2188611  PMID: 2145387

Abstract

Almost 50% of the cells infiltrating the central nervous system (CNS) of animals with experimental allergic encephalomyelitis (EAE) are macrophages (M psi). To investigate the role of the M psi in the pathogenesis of EAE, we eliminated M psi by means of mannosylated liposomes containing dichloromethylene diphosphonate (Cl2MDP). Cl2MDP- containing liposomes injected intravenously eliminate M psi in spleen and liver. Incorporation of mannose into the lipid layers enables the liposomes to pass the blood-brain barrier (BBB). Injections of Cl2MDP- containing mannose liposomes intravenously shortly before the appearance of clinical signs, markedly suppressed the expression of clinical signs of EAE. This suppression was accompanied by a marked reduction of infiltrated M psi in the CNS. Cl2MDP-containing liposomes without mannose incorporated had no effect. Cl2MDP-containing mannosylated liposomes had no effect on plasma corticosterone levels compared with injections of saline; thus, the suppression of expression of EAE was not corticosterone mediated. These results show that the M psi within the CNS play an important role in the pathogenesis of EAE.

Full Text

The Full Text of this article is available as a PDF (957.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoniou A. V., Parker D., Turk J. L., Tan B. T., Scheper R. J. Immunocytochemical identification and quantitation of mononuclear cells in the meninges during the development of chronic relapsing experimental allergic encephalomyelitis (CREAE) in the guinea pig. Cell Immunol. 1986 Feb;97(2):386–396. doi: 10.1016/0008-8749(86)90408-9. [DOI] [PubMed] [Google Scholar]
  2. Barclay A. N. The localization of populations of lymphocytes defined by monoclonal antibodies in rat lymphoid tissues. Immunology. 1981 Apr;42(4):593–600. [PMC free article] [PubMed] [Google Scholar]
  3. Berkenbosch F., Vermes I., Tilders F. J. The beta-adrenoceptor-blocking drug propranolol prevents secretion of immunoreactive beta-endorphin and alpha-melanocyte-stimulating hormone in response to certain stress stimuli. Endocrinology. 1984 Sep;115(3):1051–1059. doi: 10.1210/endo-115-3-1051. [DOI] [PubMed] [Google Scholar]
  4. Brosnan C. F., Bornstein M. B., Bloom B. R. The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol. 1981 Feb;126(2):614–620. [PubMed] [Google Scholar]
  5. Brosnan C. F., Cammer W., Norton W. T., Bloom B. R. Proteinase inhibitors suppress the development of experimental allergic encephalomyelitis. Nature. 1980 May 22;285(5762):235–237. doi: 10.1038/285235a0. [DOI] [PubMed] [Google Scholar]
  6. Cammer W., Bloom B. R., Norton W. T., Gordon S. Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: a possible mechanism of inflammatory demyelination. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1554–1558. doi: 10.1073/pnas.75.3.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Claassen E., Van Rooijen N. The effect of elimination of macrophages on the tissue distribution of liposomes containing [3H]methotrexate. Biochim Biophys Acta. 1984 Dec 20;802(3):428–434. doi: 10.1016/0304-4165(84)90360-x. [DOI] [PubMed] [Google Scholar]
  8. Cuzner M. L., Barnard R. O., MacGregor B. J., Borshell N. J., Davison A. N. Myelin composition in acute and chronic multiple sclerosis in relation to cerebral lysosomal activity. J Neurol Sci. 1976 Oct;29(2-4):323–334. doi: 10.1016/0022-510x(76)90181-7. [DOI] [PubMed] [Google Scholar]
  9. Damoiseaux J. G., Döpp E. A., Neefjes J. J., Beelen R. H., Dijkstra C. D. Heterogeneity of macrophages in the rat evidenced by variability in determinants: two new anti-rat macrophage antibodies against a heterodimer of 160 and 95 kd (CD11/CD18). J Leukoc Biol. 1989 Dec;46(6):556–564. doi: 10.1002/jlb.46.6.556. [DOI] [PubMed] [Google Scholar]
  10. Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
  11. Epstein L. G., Prineas J. W., Raine C. S. Attachment of myelin to coated pits on macrophages in experimental allergic encephalomyelitis. J Neurol Sci. 1983 Oct-Nov;61(3):341–348. doi: 10.1016/0022-510x(83)90167-3. [DOI] [PubMed] [Google Scholar]
  12. Ezekowitz R. A., Stahl P. D. The structure and function of vertebrate mannose lectin-like proteins. J Cell Sci Suppl. 1988;9:121–133. doi: 10.1242/jcs.1988.supplement_9.6. [DOI] [PubMed] [Google Scholar]
  13. GLICK D., VONREDLICH D., LEVINE S. FLUOROMETRIC DETERMINATION OF CORTICOSTERONE AND CORTISOL IN 0.02-0.05 MILLILITERS OF PLASMA OR SUBMILLIGRAM SAMPLES OF ADRENAL TISSUE. Endocrinology. 1964 Apr;74:653–655. doi: 10.1210/endo-74-4-653. [DOI] [PubMed] [Google Scholar]
  14. Garcon N., Gregoriadis G., Taylor M., Summerfield J. Mannose-mediated targeted immunoadjuvant action of liposomes. Immunology. 1988 Aug;64(4):743–745. [PMC free article] [PubMed] [Google Scholar]
  15. Hammann K. P., Hopf H. C. The significance of the inflammatory reactions for the development of clinical signs in multiple sclerosis and acute experimental autoimmune encephalomyelitis as assessed by means of the spontaneous chemiluminescence activity of peripheral blood monocytes. J Neuroimmunol. 1988 Dec;20(2-3):239–241. doi: 10.1016/0165-5728(88)90167-1. [DOI] [PubMed] [Google Scholar]
  16. Hartung H. P., Heininger K. Non-specific mechanisms of inflammation and tissue damage in MS. Res Immunol. 1989 Feb;140(2):226–248. doi: 10.1016/0923-2494(89)90092-8. [DOI] [PubMed] [Google Scholar]
  17. Hartung H. P., Schäfer B., Heininger K., Stoll G., Toyka K. V. The role of macrophages and eicosanoids in the pathogenesis of experimental allergic neuritis. Serial clinical, electrophysiological, biochemical and morphological observations. Brain. 1988 Oct;111(Pt 5):1039–1059. doi: 10.1093/brain/111.5.1039. [DOI] [PubMed] [Google Scholar]
  18. Heininger K., Schäfer B., Hartung H. P., Fierz W., Linington C., Toyka K. V. The role of macrophages in experimental autoimmune neuritis induced by a P2-specific T-cell line. Ann Neurol. 1988 Apr;23(4):326–331. doi: 10.1002/ana.410230403. [DOI] [PubMed] [Google Scholar]
  19. Hickey W. F., Gonatas N. K., Kimura H., Wilson D. B. Identification and quantitation of T lymphocyte subsets found in the spinal cord of the Lewis rat during acute experimental allergic encephalomyelitis. J Immunol. 1983 Dec;131(6):2805–2809. [PubMed] [Google Scholar]
  20. Konat G. W., Wiggins R. C. Effect of reactive oxygen species on myelin membrane proteins. J Neurochem. 1985 Oct;45(4):1113–1118. doi: 10.1111/j.1471-4159.1985.tb05530.x. [DOI] [PubMed] [Google Scholar]
  21. Levy M. H., Wheelock E. F. Effects of intravenous silica on immune and non-immune functions of the murine host. J Immunol. 1975 Jul;115(1):41–48. [PubMed] [Google Scholar]
  22. MacPhee I. A., Antoni F. A., Mason D. W. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J Exp Med. 1989 Feb 1;169(2):431–445. doi: 10.1084/jem.169.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marks N., Grynbaum A., Levine S. Proteolytic enzymes in ordinary, hyperacute, monocytic and passive transfer forms of experimental allergic encephalomyelitis. Brain Res. 1977 Mar 4;123(1):147–157. doi: 10.1016/0006-8993(77)90649-7. [DOI] [PubMed] [Google Scholar]
  24. Mason D., MacPhee I., Antoni F. The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology. 1990 May;70(1):1–5. [PMC free article] [PubMed] [Google Scholar]
  25. Matthaei I., Polman C. H., de Groot C. J., Dijkstra C. D., Koetsier J. C., Sminia T. Observer agreement in the assessment of clinical signs in experimental allergic encephalomyelitis. J Neuroimmunol. 1989 Jun;23(1):25–28. doi: 10.1016/0165-5728(89)90068-4. [DOI] [PubMed] [Google Scholar]
  26. Osanai T., Nagai Y. Suppression of experimental allergic encephalomyelitis (EAE) with liposome-encapsulated protease inhibitor: therapy through the blood-brain barrier. Neurochem Res. 1984 Oct;9(10):1407–1416. doi: 10.1007/BF00964667. [DOI] [PubMed] [Google Scholar]
  27. Polman C. H., Dijkstra C. D., Sminia T., Koetsier J. C. Immunohistological analysis of macrophages in the central nervous system of Lewis rats with acute experimental allergic encephalomyelitis. J Neuroimmunol. 1986 May;11(3):215–222. doi: 10.1016/0165-5728(86)90005-6. [DOI] [PubMed] [Google Scholar]
  28. Robinson A. P., White T. M., Mason D. W. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology. 1986 Feb;57(2):239–247. [PMC free article] [PubMed] [Google Scholar]
  29. Sedgwick J., Brostoff S., Mason D. Experimental allergic encephalomyelitis in the absence of a classical delayed-type hypersensitivity reaction. Severe paralytic disease correlates with the presence of interleukin 2 receptor-positive cells infiltrating the central nervous system. J Exp Med. 1987 Apr 1;165(4):1058–1075. doi: 10.1084/jem.165.4.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Selmaj K. W., Raine C. S. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol. 1988 Apr;23(4):339–346. doi: 10.1002/ana.410230405. [DOI] [PubMed] [Google Scholar]
  31. Sobel R. A., Blanchette B. W., Bhan A. K., Colvin R. B. The immunopathology of experimental allergic encephalomyelitis. I. Quantitative analysis of inflammatory cells in situ. J Immunol. 1984 May;132(5):2393–2401. [PubMed] [Google Scholar]
  32. Stahl P. D., Rodman J. S., Miller M. J., Schlesinger P. H. Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1399–1403. doi: 10.1073/pnas.75.3.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tansey F. A., Brosnan C. F. Protection against experimental allergic neuritis with silica quartz dust. J Neuroimmunol. 1982 Nov;3(3):169–179. doi: 10.1016/0165-5728(82)90020-0. [DOI] [PubMed] [Google Scholar]
  34. Traugott U., Raine C. S., McFarlin D. E. Acute experimental allergic encephalomyelitis in the mouse: immunopathology of the developing lesion. Cell Immunol. 1985 Mar;91(1):240–254. doi: 10.1016/0008-8749(85)90047-4. [DOI] [PubMed] [Google Scholar]
  35. Umezawa F., Eto Y. Liposome targeting to mouse brain: mannose as a recognition marker. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1038–1044. doi: 10.1016/s0006-291x(88)81333-0. [DOI] [PubMed] [Google Scholar]
  36. Van Rooijen N., Kors N., vd Ende M., Dijkstra C. D. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res. 1990 May;260(2):215–222. doi: 10.1007/BF00318625. [DOI] [PubMed] [Google Scholar]
  37. Van Rooijen N. The liposome-mediated macrophage 'suicide' technique. J Immunol Methods. 1989 Nov 13;124(1):1–6. doi: 10.1016/0022-1759(89)90178-6. [DOI] [PubMed] [Google Scholar]
  38. Vermes I., Berkenbosch F., Tilders F. J., Smelik P. G. Hypothalamic deafferentation in the rat appears to discriminate between the anterior lobe and intermediate lobe response to stress. Neurosci Lett. 1981 Nov 18;27(1):89–93. doi: 10.1016/0304-3940(81)90210-x. [DOI] [PubMed] [Google Scholar]
  39. Williams A. F., Galfrè G., Milstein C. Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: differentiation antigens of rat lymphocytes. Cell. 1977 Nov;12(3):663–673. doi: 10.1016/0092-8674(77)90266-5. [DOI] [PubMed] [Google Scholar]
  40. Wirth J. J., Carney W. P., Wheelock E. F. The effect of particle size on the immunodepressive properties of silica. J Immunol Methods. 1980;32(4):357–373. doi: 10.1016/0022-1759(80)90028-9. [DOI] [PubMed] [Google Scholar]
  41. Zimmerman B. T., Canono B. P., Campbell P. A. Silica decreases phagocytosis and bactericidal activity of both macrophages and neutrophils in vitro. Immunology. 1986 Dec;59(4):521–525. [PMC free article] [PubMed] [Google Scholar]
  42. de Groot C. J., Dijkstra C. D., Sminia T. Discrimination between different types of neuroglial cells in rat central nervous system using combined immuno- and enzyme-histochemical methods. Immunobiology. 1988 Dec;178(3):177–190. doi: 10.1016/S0171-2985(88)80063-9. [DOI] [PubMed] [Google Scholar]
  43. van Rooijen N., van Nieuwmegen R. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study. Cell Tissue Res. 1984;238(2):355–358. doi: 10.1007/BF00217308. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES