Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Oct 1;172(4):1133–1142. doi: 10.1084/jem.172.4.1133

Identification and characterization of receptors specific for human pancreatic secretory trypsin inhibitor

PMCID: PMC2188617  PMID: 2170560

Abstract

Specific binding sites for human pancreatic secretory trypsin inhibitor (PSTI) on 3T3 Swiss albino cells were studied using radioiodinated recombinant PSTI. Some ion species, pH, and temperature significantly influenced the binding of 125I-PSTI. Kinetic studies showed that the binding of 125I-PSTI to 3T3 Swiss albino cells reached the maximum level within 120 min at 4 degrees C, with a slow dissociation rate. The half-maximal inhibition (ID50) of 125I-PSTI binding by unlabeled PSTI occurred at 1.0 x 10(-10) M. On Scatchard analysis of the competitive binding data, linear plots indicated a single class of receptors with high affinity (Kd = 5.3 x 10(-10) M) on 3T3 Swiss albino cells, the number of receptors being 5,400 per cell. Treatment of surface-bound radiolabeled PSTI with a chemical crosslinker (disuccinimidyl suberate) led to the identification of a membrane polypeptide of Mr 140,000 to which PSTI was crosslinked. The formation was inhibited by an excess amount of unlabeled PSTI in a dose-dependent manner. The binding of 125I-PSTI to 3T3 Swiss albino cells was competitively inhibited by unlabeled PSTI but not by other peptide hormones, such as epidermal growth factor (EGF), bovine fibroblast growth factor, insulin-like growth factor, transforming growth factor alpha, platelet-derived growth factor, and tumor necrosis factor, indicating the presence of receptors specific for PSTI. Various protease inhibitors had no or only a little effect, and mercaptoethanol and dithiothreitol strongly decreased the binding of 125I-PSTI. Incubation at 37 degrees C resulted in rapid internalization of cell-bound 125I-PSTI, followed by the appearance of trichloroacetic acid-soluble 125I-radioactivity in the culture medium, due to degradation of internalized PSTI. In addition, PSTI stimulated [3H]thymidine incorporation into DNA on 3T3 Swiss albino cells in a dose-dependent manner. The combined addition of PSTI and EGF stimulated [3H]thymidine incorporation to an extent greater than that seen with either agent alone. These results indicated that the biological effect of PSTI was mediated by high affinity plasma membrane receptors, which were not a cell-surface proteinase(s). Specific binding of 125I-PSTI was noted with the following cells: WI- 38, 3T3 Swiss albino, HUVE, BDC-1, and H4-II-E-C3.

Full Text

The Full Text of this article is available as a PDF (931.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COHEN S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962 May;237:1555–1562. [PubMed] [Google Scholar]
  2. Carney D. H., Glenn K. C., Cunningham D. D. Conditions which affect initiation of animal cell division by trypsin and thrombin. J Cell Physiol. 1978 Apr;95(1):13–22. doi: 10.1002/jcp.1040950103. [DOI] [PubMed] [Google Scholar]
  3. Carpenter G., Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205. [DOI] [PubMed] [Google Scholar]
  4. Carpenter G., Lembach K. J., Morrison M. M., Cohen S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem. 1975 Jun 10;250(11):4297–4304. [PubMed] [Google Scholar]
  5. Chen L. B., Teng N. N., Buchanan J. M. Mitogenicity of thrombin and surface alterations on mouse splenocytes. Exp Cell Res. 1976 Aug;101(1):41–46. doi: 10.1016/0014-4827(76)90409-2. [DOI] [PubMed] [Google Scholar]
  6. Cook J. R., Chen J. K. Enhancement of transformed cell growth in agar by serine protease inhibitors. J Cell Physiol. 1988 Jul;136(1):188–193. doi: 10.1002/jcp.1041360125. [DOI] [PubMed] [Google Scholar]
  7. Costlow M. E., Hample A. Prolactin receptors in cultured rat mammary tumor cells. Energy-dependent uptake and degradation of hormone receptors. J Biol Chem. 1982 Aug 25;257(16):9330–9334. [PubMed] [Google Scholar]
  8. Cuatrecasas P., Hollenberg M. D. Membrane receptors and hormone action. Adv Protein Chem. 1976;30:251–451. doi: 10.1016/s0065-3233(08)60481-7. [DOI] [PubMed] [Google Scholar]
  9. Dower S. K., DeLisi C., Titus J. A., Segal D. M. Mechanism of binding of multivalent immune complexes to Fc receptors. 1. Equilibrium binding. Biochemistry. 1981 Oct 27;20(22):6326–6334. doi: 10.1021/bi00525a007. [DOI] [PubMed] [Google Scholar]
  10. Dower S. K., Ozato K., Segal D. M. The interaction of monoclonal antibodies with MHC class I antigens on mouse spleen cells. I. Analysis of the mechanism of binding. J Immunol. 1984 Feb;132(2):751–758. [PubMed] [Google Scholar]
  11. Edwards D. R., Murphy G., Reynolds J. J., Whitham S. E., Docherty A. J., Angel P., Heath J. K. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 1987 Jul;6(7):1899–1904. doi: 10.1002/j.1460-2075.1987.tb02449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friesel R., Burgess W. H., Mehlman T., Maciag T. The characterization of the receptor for endothelial cell growth factor by covalent ligand attachment. J Biol Chem. 1986 Jun 15;261(17):7581–7584. [PubMed] [Google Scholar]
  13. Fukuoka S., Fushiki T., Kitagawa Y., Sugimoto E., Iwai K. Growth stimulating activity on 3T3 fibroblasts of the molecular weight 6,500-peptide purified from rat pancreatic juice. Biochem Biophys Res Commun. 1986 Sep 14;139(2):545–550. doi: 10.1016/s0006-291x(86)80025-0. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  15. Green D. A., Moore J. B., Jr Demonstration of protease activity for epidermal growth factor-binding protein. Arch Biochem Biophys. 1980 Jun;202(1):201–209. doi: 10.1016/0003-9861(80)90422-1. [DOI] [PubMed] [Google Scholar]
  16. Hunt L. T., Barker W. C., Dayhoff M. O. Epidermal growth factor: internal duplication and probable relationship to pancreatic secretory trypsin inhibitor. Biochem Biophys Res Commun. 1974 Oct 8;60(3):1020–1028. doi: 10.1016/0006-291x(74)90415-x. [DOI] [PubMed] [Google Scholar]
  17. Iwai K., Fukuoka S., Fushiki T., Tsujikawa M., Hirose M., Tsunasawa S., Sakiyama F. Purification and sequencing of a trypsin-sensitive cholecystokinin-releasing peptide from rat pancreatic juice. Its homology with pancreatic secretory trypsin inhibitor. J Biol Chem. 1987 Jul 5;262(19):8956–8959. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Low D. A., Baker J. B., Koonce W. C., Cunningham D. D. Released protease-nexin regulates cellular binding, internalization, and degradation of serine proteases. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2340–2344. doi: 10.1073/pnas.78.4.2340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsuda K., Ogawa M., Murata A., Kitahara T., Kosaki G. Elevation of serum immunoreactive pancreatic secretory trypsin inhibitor contents in various malignant diseases. Res Commun Chem Pathol Pharmacol. 1983 May;40(2):301–305. [PubMed] [Google Scholar]
  21. Matsuda K., Ogawa M., Shibata T., Nishibe S., Miyauchi K., Matsuda Y., Mori T. Postoperative elevation of serum pancreatic secretory trypsin inhibitor. Am J Gastroenterol. 1985 Sep;80(9):694–698. [PubMed] [Google Scholar]
  22. McKeehan W. L., Sakagami Y., Hoshi H., McKeehan K. A. Two apparent human endothelial cell growth factors from human hepatoma cells are tumor-associated proteinase inhibitors. J Biol Chem. 1986 Apr 25;261(12):5378–5383. [PubMed] [Google Scholar]
  23. Niinobu T., Ogawa M., Shibata T., Murata A., Nishibe S., Mori T., Ogata N. Specific binding of human pancreatic secretory trypsin inhibitor to various cultured cells. Res Commun Chem Pathol Pharmacol. 1986 Aug;53(2):245–248. [PubMed] [Google Scholar]
  24. Ogawa M., Tsushima T., Ohba Y., Ogawa N., Tanaka S., Ishida M., Mori T. Stimulation of DNA synthesis in human fibroblasts by human pancreatic secretory trypsin inhibitor. Res Commun Chem Pathol Pharmacol. 1985 Oct;50(1):155–158. [PubMed] [Google Scholar]
  25. Park L. S., Friend D., Grabstein K., Urdal D. L. Characterization of the high-affinity cell-surface receptor for murine B-cell-stimulating factor 1. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1669–1673. doi: 10.1073/pnas.84.6.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pohjanpelto P. Proteases stimulate proliferation of human fibroblasts. J Cell Physiol. 1977 Jun;91(3):387–392. doi: 10.1002/jcp.1040910308. [DOI] [PubMed] [Google Scholar]
  27. Savage C. R., Jr, Harper R. Human epidermal growth factor/urogastrone: rapid purification procedure and partial characterization. Anal Biochem. 1981 Feb;111(1):195–202. doi: 10.1016/0003-2697(81)90249-9. [DOI] [PubMed] [Google Scholar]
  28. Scheving L. A. Primary amino acid sequence similarity between human epidermal growth factor-urogastrone, human pancreatic secretory trypsin inhibitor, and members of porcine secretin family. Arch Biochem Biophys. 1983 Oct 15;226(2):411–413. doi: 10.1016/0003-9861(83)90309-0. [DOI] [PubMed] [Google Scholar]
  29. Scott G. K., Seow H. F. Further evidence for a cell surface proteinase essential to the growth of cultured fibroblasts. Exp Cell Res. 1985 May;158(1):41–52. doi: 10.1016/0014-4827(85)90429-x. [DOI] [PubMed] [Google Scholar]
  30. Sefton B. M., Rubin H. Release from density dependent growth inhibition by proteolytic enzymes. Nature. 1970 Aug 22;227(5260):843–845. doi: 10.1038/227843a0. [DOI] [PubMed] [Google Scholar]
  31. Shiu R. P., Kelly P. A., Friesen H. G. Radioreceptor assay for prolactin and other lactogenic hormones. Science. 1973 Jun 1;180(4089):968–971. doi: 10.1126/science.180.4089.968. [DOI] [PubMed] [Google Scholar]
  32. Thorell J. I., Johansson B. G. Enzymatic iodination of polypeptides with 125I to high specific activity. Biochim Biophys Acta. 1971 Dec 28;251(3):363–369. doi: 10.1016/0005-2795(71)90123-1. [DOI] [PubMed] [Google Scholar]
  33. Tomita N., Horii A., Yamamoto T., Ogawa M., Mori T., Matsubara K. Expression of pancreatic secretory trypsin inhibitor gene in neoplastic tissues. FEBS Lett. 1987 Dec 10;225(1-2):113–119. doi: 10.1016/0014-5793(87)81141-9. [DOI] [PubMed] [Google Scholar]
  34. Tsushima T., Friesen H. G. Radioreceptor assay for growth hormone. J Clin Endocrinol Metab. 1973 Aug;37(2):334–337. doi: 10.1210/jcem-37-2-334. [DOI] [PubMed] [Google Scholar]
  35. Uda K., Ogawa M., Shibata T., Murata A., Mori T., Kikuchi N., Yoshida N., Tsunasawa S., Sakiyama F. Purification, characterization and amino-acid sequencing of two pancreatic secretory trypsin inhibitors in rat pancreatic juice. Biol Chem Hoppe Seyler. 1988 May;369 (Suppl):55–61. [PubMed] [Google Scholar]
  36. Yamamoto T., Nakamura Y., Nishide J., Emi M., Ogawa M., Mori T., Matsubara K. Molecular cloning and nucleotide sequence of human pancreatic secretory trypsin inhibitor (PSTI) cDNA. Biochem Biophys Res Commun. 1985 Oct 30;132(2):605–612. doi: 10.1016/0006-291x(85)91176-3. [DOI] [PubMed] [Google Scholar]
  37. de Meyts P., Roth J., Neville D. M., Jr, Gavin J. R., 3rd, Lesniak M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973 Nov 1;55(1):154–161. doi: 10.1016/s0006-291x(73)80072-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES