Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Oct 1;172(4):1217–1224. doi: 10.1084/jem.172.4.1217

Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity

PMCID: PMC2188618  PMID: 2212951

Abstract

To study the effects of localized secretion of cytokines on tumor progression, the gene for human interleukin 2 (IL-2) was introduced via retroviral vectors into CMS-5 cells, a weakly immunogenic mouse fibrosarcoma cell line of BALB/c origin. Secretion of low levels of IL- 2 from the tumor cells abrogated their tumorigenicity and induced a long-lasting protective immune response against a challenge with a tumorigenic dose of parental CMS-5 cells. Co-injection of IL-2- producing CMS-5 cells with unmodified tumor cells inhibited tumor formation even when highly tumorigenic doses of CMS-5 cells were used. Cytolytic activity in mice injected with parental CMS-5 cells was transient and was greatly diminished 3 wk after injection, as commonly observed in tumor-bearing animals. However, in mice injected with IL-2- producing cells, tumor-specific cytolytic activity persisted at high levels for the duration of the observation period (at least 75 d). High levels of tumor-specific cytolytic activity could also be detected in parental CMS-5 tumor-bearing animals 18 d after inoculation with tumor cells, if IL-2-producing CMS-5 cells but not unmodified parental tumor cells were used as targets. These studies highlight the potential advantages of localized secretion of cytokines mediated via gene transfer to induce potent anti-tumor immune responses.

Full Text

The Full Text of this article is available as a PDF (758.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armentano D., Yu S. F., Kantoff P. W., von Ruden T., Anderson W. F., Gilboa E. Effect of internal viral sequences on the utility of retroviral vectors. J Virol. 1987 May;61(5):1647–1650. doi: 10.1128/jvi.61.5.1647-1650.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheever M. A., Greenberg P. D., Fefer A., Gillis S. Augmentation of the anti-tumor therapeutic efficacy of long-term cultured T lymphocytes by in vivo administration of purified interleukin 2. J Exp Med. 1982 Apr 1;155(4):968–980. doi: 10.1084/jem.155.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chou T., Bertera S., Chang A. E., Shu S. Adoptive immunotherapy of microscopic and advanced visceral metastases with in vitro sensitized lymphoid cells from mice bearing progressive tumors. J Immunol. 1988 Sep 1;141(5):1775–1781. [PubMed] [Google Scholar]
  4. Cullen B. R. Expression of a cloned human interleukin-2 cDNA is enhanced by the substitution of a heterologous mRNA leader region. DNA. 1988 Nov;7(9):645–650. doi: 10.1089/dna.1988.7.645. [DOI] [PubMed] [Google Scholar]
  5. DeLeo A. B., Shiku H., Takahashi T., John M., Old L. J. Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma. J Exp Med. 1977 Sep 1;146(3):720–734. doi: 10.1084/jem.146.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Donohue J. H., Rosenstein M., Chang A. E., Lotze M. T., Robb R. J., Rosenberg S. A. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J Immunol. 1984 Apr;132(4):2123–2128. [PubMed] [Google Scholar]
  7. Erard F., Corthesy P., Nabholz M., Lowenthal J. W., Zaech P., Plaetinck G., MacDonald H. R. Interleukin 2 is both necessary and sufficient for the growth and differentiation of lectin-stimulated cytolytic T lymphocyte precursors. J Immunol. 1985 Mar;134(3):1644–1652. [PubMed] [Google Scholar]
  8. FOLEY E. J. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res. 1953 Dec;13(12):835–837. [PubMed] [Google Scholar]
  9. Fearon E. R., Pardoll D. M., Itaya T., Golumbek P., Levitsky H. I., Simons J. W., Karasuyama H., Vogelstein B., Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990 Feb 9;60(3):397–403. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
  10. Forni G., Fujiwara H., Martino F., Hamaoka T., Jemma C., Caretto P., Giovarelli M. Helper strategy in tumor immunology: expansion of helper lymphocytes and utilization of helper lymphokines for experimental and clinical immunotherapy. Cancer Metastasis Rev. 1988 Dec;7(4):289–309. doi: 10.1007/BF00051371. [DOI] [PubMed] [Google Scholar]
  11. Forni G., Santoni A. Immunogenicity of "nonimmunogenic" tumors. J Biol Response Mod. 1984;3(2):128–131. [PubMed] [Google Scholar]
  12. Hantzopoulos P. A., Sullenger B. A., Ungers G., Gilboa E. Improved gene expression upon transfer of the adenosine deaminase minigene outside the transcriptional unit of a retroviral vector. Proc Natl Acad Sci U S A. 1989 May;86(10):3519–3523. doi: 10.1073/pnas.86.10.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hewitt H. B., Blake E. R., Walder A. S. A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br J Cancer. 1976 Mar;33(3):241–259. doi: 10.1038/bjc.1976.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kamo I., Friedman H. Immunosuppression and the role of suppressive factors in cancer. Adv Cancer Res. 1977;25:271–321. doi: 10.1016/s0065-230x(08)60636-3. [DOI] [PubMed] [Google Scholar]
  15. Key M. E., Brandhorst J. S., Hanna M. G., Jr More on the relevance of animal tumor models: immunogenicity of transplantable leukemias of recent origin in syngeneic strain 2 guinea pigs. J Biol Response Mod. 1984 Aug;3(4):359–365. [PubMed] [Google Scholar]
  16. Markowitz D., Goff S., Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol. 1988 Apr;62(4):1120–1124. doi: 10.1128/jvi.62.4.1120-1124.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Markowitz D., Goff S., Bank A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology. 1988 Dec;167(2):400–406. [PubMed] [Google Scholar]
  18. McKnight S. L. The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Res. 1980 Dec 20;8(24):5949–5964. doi: 10.1093/nar/8.24.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Naor D. Suppressor cells: permitters and promoters of malignancy? Adv Cancer Res. 1979;29:45–125. doi: 10.1016/s0065-230x(08)60846-5. [DOI] [PubMed] [Google Scholar]
  20. PREHN R. T., MAIN J. M. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957 Jun;18(6):769–778. [PubMed] [Google Scholar]
  21. Rosenberg S. A., Lotze M. T. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681–709. doi: 10.1146/annurev.iy.04.040186.003341. [DOI] [PubMed] [Google Scholar]
  22. Rosenberg S. A., Mulé J. J., Spiess P. J., Reichert C. M., Schwarz S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985 May 1;161(5):1169–1188. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shu S. Y., Chou T., Sakai K. Lymphocytes generated by in vivo priming and in vitro sensitization demonstrate therapeutic efficacy against a murine tumor that lacks apparent immunogenicity. J Immunol. 1989 Jul 15;143(2):740–748. [PubMed] [Google Scholar]
  24. Smith K. A., Favata M. F., Oroszlan S. Production and characterization of monoclonal antibodies to human interleukin 2: strategy and tactics. J Immunol. 1983 Oct;131(4):1808–1815. [PubMed] [Google Scholar]
  25. Srivastava P. K., DeLeo A. B., Old L. J. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A. 1986 May;83(10):3407–3411. doi: 10.1073/pnas.83.10.3407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Takei F., Levy J. G., Kilburn D. G. Characterization of suppressor cells in mice bearing syngeneic mastocytoma. J Immunol. 1977 Feb;118(2):412–417. [PubMed] [Google Scholar]
  27. Takei F., Levy J. G., Kilburn D. G. In vitro induction of cytotoxicity against syngeneic mastocytoma and its suppression by spleen and thymus cells from tumor-bearing mice. J Immunol. 1976 Feb;116(2):288–293. [PubMed] [Google Scholar]
  28. Tepper R. I., Pattengale P. K., Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell. 1989 May 5;57(3):503–512. doi: 10.1016/0092-8674(89)90925-2. [DOI] [PubMed] [Google Scholar]
  29. Thompson J. A., Peace D. J., Klarnet J. P., Kern D. E., Greenberg P. D., Cheever M. A. Eradication of disseminated murine leukemia by treatment with high-dose interleukin 2. J Immunol. 1986 Dec 1;137(11):3675–3680. [PubMed] [Google Scholar]
  30. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wano Y., Cullen B. R., Svetlik P. A., Peffer N. J., Greene W. C. Reconstitution of high affinity IL-2 receptor expression in a human T-cell line using a retroviral cDNA expression vector. Mol Biol Med. 1987 Apr;4(2):95–109. [PubMed] [Google Scholar]
  32. Watanabe Y., Kuribayashi K., Miyatake S., Nishihara K., Nakayama E., Taniyama T., Sakata T. Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9456–9460. doi: 10.1073/pnas.86.23.9456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zier K. S. Functional and antigenic properties of cultured T cells in the cell mediated lympholysis (CML) assay. Hum Immunol. 1982 Apr;4(2):147–156. doi: 10.1016/0198-8859(82)90014-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES