Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Jul 1;166(1):173–181. doi: 10.1084/jem.166.1.173

Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter's syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease

PMCID: PMC2188639  PMID: 2439632

Abstract

Ankylosing spondylitis (AS) and Reiter's syndrome (RS) both show a strong correlation with the HLA B27 haplotype. We studied whether sharing of homologous amino acid sequences in the HLA B27 antigen with an invading microbe might occur, and if so, what is the biological significance of such homology. In a computer search of the Dayhoff data bank, we found a homology of six consecutive amino acids between HLA B27.1 antigen residues 72-77 and Klebsiella pneumoniae nitrogenase residues 188-193. These shared sequences are hydrophilic, suggesting locations on molecules exposed to the cell surface. Immunochemical analysis showed that 18 of 34 sera from patients with RS (53%) and 7 of 24 sera from patients with AS (29%) contained antibodies that bound to a synthesized peptide sequence representing residues 69-84 of HLA B27.1. In contrast, only 1 of 22 sera from healthy, B27+ controls (5%) contained antibodies to this peptide (p less than 0.01). Sera from three HLA B27- patients with RS did not possess antibodies to the HLA B27 peptide. Additionally, greater than 40% of HLA B27 patients with AS or RS had antibodies to Klebsiella residues 184-193, while none of the normal nonarthritic HLA B27 haplotype subjects did. Our results suggest that an autoimmune response(s) directed against HLA B27.1 may be a pathogenic mechanism in a subset of patients with AS and RS. Further, this response may initially be induced against Klebsiella pneumoniae, a microorganism that shares sequence homology with HLA B27.

Full Text

The Full Text of this article is available as a PDF (682.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander H., Johnson D. A., Rosen J., Jerabek L., Green N., Weissman I. L., Lerner R. A. Mimicking the alloantigenicity of proteins with chemically synthesized peptides differing in single amino acids. Nature. 1983 Dec 15;306(5944):697–699. doi: 10.1038/306697a0. [DOI] [PubMed] [Google Scholar]
  2. Aparicio P., Vega M. A., López de Castro J. A. One allogeneic cytolytic T lymphocyte clone distinguishes three different HLA-B27 subtypes: identification of amino acid residues influencing the specificity and avidity of recognition. J Immunol. 1985 Nov;135(5):3074–3081. [PubMed] [Google Scholar]
  3. Archer J. R., Stubbs M. M., Currey H. L., Geczy A. F. Antiserum to Klebsiella K43 BTS 1 specifically lyses lymphocytes of HLA-B27-positive patients with ankylosing spondylitis from a London population. Lancet. 1985 Feb 9;1(8424):344–345. doi: 10.1016/s0140-6736(85)91122-5. [DOI] [PubMed] [Google Scholar]
  4. Dale J. B., Beachey E. H. Epitopes of streptococcal M proteins shared with cardiac myosin. J Exp Med. 1985 Aug 1;162(2):583–591. doi: 10.1084/jem.162.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dales S., Fujinami R. S., Oldstone M. B. Serologic relatedness between Thy-1.2 and actin revealed by monoclonal antibody. J Immunol. 1983 Sep;131(3):1332–1338. [PubMed] [Google Scholar]
  6. Dyrberg T., Oldstone M. B. Peptides as probes to study molecular mimicry and virus-induced autoimmunity. Curr Top Microbiol Immunol. 1986;130:25–37. doi: 10.1007/978-3-642-71440-5_3. [DOI] [PubMed] [Google Scholar]
  7. Eastmond C. J., Woodrow J. C. Discordance for ankylosing spondylitis in monozygotic twins. Ann Rheum Dis. 1977 Aug;36(4):360–364. doi: 10.1136/ard.36.4.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebringer R. W., Cawdell D. R., Cowling P., Ebringer A. Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease. Ann Rheum Dis. 1978 Apr;37(2):146–151. doi: 10.1136/ard.37.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujinami R. S., Oldstone M. B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985 Nov 29;230(4729):1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
  10. Hausinger R. P., Howard J. B. Comparison of the iron proteins from the nitrogen fixation complexes of Azotobacter vinelandii, Clostridium pasteurianum, and Klebsiella pneumoniae. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3826–3830. doi: 10.1073/pnas.77.7.3826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kagnoff M. F., Austin R. K., Hubert J. J., Bernardin J. E., Kasarda D. D. Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med. 1984 Nov 1;160(5):1544–1557. doi: 10.1084/jem.160.5.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krisher K., Cunningham M. W. Myosin: a link between streptococci and heart. Science. 1985 Jan 25;227(4685):413–415. doi: 10.1126/science.2578225. [DOI] [PubMed] [Google Scholar]
  13. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  14. Merrifield R. B. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:221–296. doi: 10.1002/9780470122778.ch6. [DOI] [PubMed] [Google Scholar]
  15. Mittal K. K., Mickey M. R., Singal D. P., Terasaki P. I. Serotyping for homotransplantation. 18. Refinement of microdroplet lymphocyte cytotoxicity test. Transplantation. 1968 Nov;6(8):913–927. doi: 10.1097/00007890-196811000-00006. [DOI] [PubMed] [Google Scholar]
  16. Rojo S., López de Castro J. A., Aparicio P., Van Seventer G., Bragado R. HLA-B27 antigenicity: antibodies against the chemically synthesized 63-84 peptide from HLA-B27.1 display alloantigenic specificity and discriminate among HLA-B27 subtypes. J Immunol. 1986 Aug 1;137(3):904–910. [PubMed] [Google Scholar]
  17. Schlosstein L., Terasaki P. I., Bluestone R., Pearson C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med. 1973 Apr 5;288(14):704–706. doi: 10.1056/NEJM197304052881403. [DOI] [PubMed] [Google Scholar]
  18. Sundaresan V., Ausubel F. M. Nucleotide sequence of the gene coding for the nitrogenase iron protein from Klebsiella pneumoniae. J Biol Chem. 1981 Mar 25;256(6):2808–2812. [PubMed] [Google Scholar]
  19. Szöts H., Riethmüller G., Weiss E., Meo T. Complete sequence of HLA-B27 cDNA identified through the characterization of structural markers unique to the HLA-A, -B, and -C allelic series. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1428–1432. doi: 10.1073/pnas.83.5.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trull A. K., Ebringer R., Panayi G. S., Colthorpe D., James D. C., Ebringer A. IgA antibodies to Klebsiella pneumoniae in ankylosing spondylitis. Scand J Rheumatol. 1983;12(3):249–253. doi: 10.3109/03009748309098543. [DOI] [PubMed] [Google Scholar]
  21. Welsh J., Avakian H., Cowling P., Ebringer A., Wooley P., Panayi G., Ebringer R. Ankylosing spondylitis, HLA-B27 and Klebsiella. I. Cross-reactivity studies with rabbit antisera. Br J Exp Pathol. 1980 Feb;61(1):85–91. [PMC free article] [PubMed] [Google Scholar]
  22. Wilson I. A., Niman H. L., Houghten R. A., Cherenson A. R., Connolly M. L., Lerner R. A. The structure of an antigenic determinant in a protein. Cell. 1984 Jul;37(3):767–778. doi: 10.1016/0092-8674(84)90412-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES