Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Nov 1;172(5):1521–1524. doi: 10.1084/jem.172.5.1521

Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system

PMCID: PMC2188652  PMID: 2172438

Abstract

The expression of adhesion molecules on central nervous system (CNS) vessels was examined during chronic relapsing experimental autoimmune encephalomyelitis in the SJL mouse. Two molecules associated with cell adhesion were studied: MECA-325, a murine lymph node high endothelial venule marker; and MALA-2, the murine homologue of intercellular adhesion molecule 1. During initial disease, upregulated coexpression of these two molecules occurred in the CNS. This correlated with inflammatory cell invasion. During remission, expression was downregulated, and each subsequent relapse was accompanied by corresponding upregulation. Thus, up- and downregulation of adhesion molecules in the target organ appeared to form an integral part of the inflammatory process in this autoimmune condition and support a role for receptor-mediated inflammatory cell invasion of relevance to the pathogenesis of multiple sclerosis.

Full Text

The Full Text of this article is available as a PDF (552.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cross A. H., Cannella B., Brosnan C. F., Raine C. S. Homing to central nervous system vasculature by antigen-specific lymphocytes. I. Localization of 14C-labeled cells during acute, chronic, and relapsing experimental allergic encephalomyelitis. Lab Invest. 1990 Aug;63(2):162–170. [PubMed] [Google Scholar]
  2. Doyle C., Strominger J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature. 1987 Nov 19;330(6145):256–259. doi: 10.1038/330256a0. [DOI] [PubMed] [Google Scholar]
  3. Duijvestijn A. M., Kerkhove M., Bargatze R. F., Butcher E. C. Lymphoid tissue- and inflammation-specific endothelial cell differentiation defined by monoclonal antibodies. J Immunol. 1987 Feb 1;138(3):713–719. [PubMed] [Google Scholar]
  4. Duijvestijn A. M., Schreiber A. B., Butcher E. C. Interferon-gamma regulates an antigen specific for endothelial cells involved in lymphocyte traffic. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9114–9118. doi: 10.1073/pnas.83.23.9114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jalkanen S., Steere A. C., Fox R. I., Butcher E. C. A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium. Science. 1986 Aug 1;233(4763):556–558. doi: 10.1126/science.3726548. [DOI] [PubMed] [Google Scholar]
  6. Pober J. S., Gimbrone M. A., Jr, Cotran R. S., Reiss C. S., Burakoff S. J., Fiers W., Ault K. A. Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J Exp Med. 1983 Apr 1;157(4):1339–1353. doi: 10.1084/jem.157.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sobel R. A., Mitchell M. E., Fondren G. Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol. 1990 Jun;136(6):1309–1316. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES