Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Sep 1;166(3):637–646. doi: 10.1084/jem.166.3.637

Amino acids at the site of V kappa-J kappa recombination not encoded by germline sequences

PMCID: PMC2188693  PMID: 3040883

Abstract

Murine V kappa-J kappa recombination is characterized by a maintenance of size at the site of recombination and the use of nucleic acids found only in germline sequences. This is in contrast to heavy chain VH-D-JH assembly where random nucleotides are added at the recombination sites to produce considerable size variation, even though the heptamer/nonomer recombination sequences are identical in both kappa and heavy chain genes. We have examined the origin of an unusual amino acid, Ile, found at the site of V kappa-J kappa recombination in antigalactan antibodies, by sequence analysis of the corresponding rearranged and germline genes. Results indicate that the Ile codon can be generated by use of a single nucleotide 3' of the V kappa segment in combination with the second and third nucleotides of the first codon of J kappa 5 or J kappa 4. However, several antigalactan antibodies express Ile in combination with J kappa 2. An Ile codon cannot be generated by recombination in any reading frame between germline V kappa and J kappa 2 segments. These results suggest that the origin of the Ile codon in lines using J kappa 2 may represent a novel even in murine light chain assembly, possibly similar to the de novo addition of nucleotides observed in heavy chain gene recombination.

Full Text

The Full Text of this article is available as a PDF (779.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Baltimore D. Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4118–4122. doi: 10.1073/pnas.79.13.4118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clarke S. H., Claflin J. L., Potter M., Rudikoff S. Polymorphism in anti-phosphocholine antibodies reflecting evolution of immunoglobulin families. J Exp Med. 1983 Jan 1;157(1):98–113. doi: 10.1084/jem.157.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dzierzak E. A., Brodeur P., Marion T., Janeway C. A., Jr, Bothwell A. Molecular characterization of antibodies bearing Id-460. II. Molecular basis for Id-460 expression. J Exp Med. 1985 Nov 1;162(5):1494–1511. doi: 10.1084/jem.162.5.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Even J., Griffiths G. M., Berek C., Milstein C. Light chain germ-line genes and the immune response to 2-phenyloxazolone. EMBO J. 1985 Dec 16;4(13A):3439–3445. doi: 10.1002/j.1460-2075.1985.tb04102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heinrich G., Traunecker A., Tonegawa S. Somatic mutation creates diversity in the major group of mouse immunoglobulin kappa light chains. J Exp Med. 1984 Feb 1;159(2):417–435. doi: 10.1084/jem.159.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jolley M. E., Glaudemans C. P., Rudikoff S., Potter M. Structural requirements for the binding of derivatives of D-galactose to two homogeneous murine immunoglobulins. Biochemistry. 1974 Jul 16;13(15):3179–3184. doi: 10.1021/bi00712a028. [DOI] [PubMed] [Google Scholar]
  7. Jolley M. E., Rudikoff S., Potter M., Glaudemans C. P. Spectral changes on binding of oligosaccharides to murine immunoglobulin A myeloma proteins. Biochemistry. 1973 Jul 31;12(16):3039–3044. doi: 10.1021/bi00740a015. [DOI] [PubMed] [Google Scholar]
  8. Juszczak E., Near R. I., Gefter M. L., Margolies M. N. Complete heavy and light chain variable region sequence of anti-arsonate monoclonal antibodies from BALB/c and A/J mice sharing the 36-60 idiotype are highly homologous. J Immunol. 1984 Nov;133(5):2603–2609. [PubMed] [Google Scholar]
  9. Kaartinen M., Mäkelä O. Functional analogues of the VKOx1 gene in different strains of mice: evolutionary conservation but diversity based on V-J joining. J Immunol. 1987 Mar 1;138(5):1613–1617. [PubMed] [Google Scholar]
  10. Lazure C., Hum W. T., Gibson D. M. Sequence diversity within a subgroup of mouse immunoglobulin kappa chains controlled by the IgK-Ef2 locus. J Exp Med. 1981 Jul 1;154(1):146–155. doi: 10.1084/jem.154.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Max E. E., Seidman J. G., Leder P. Sequences of five potential recombination sites encoded close to an immunoglobulin kappa constant region gene. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3450–3454. doi: 10.1073/pnas.76.7.3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mushinski J. F., Blattner F. R., Owens J. D., Finkelman F. D., Kessler S. W., Fitzmaurice L., Potter M., Tucker P. W. Mouse immunoglobulin D: construction and characterization of a cloned delta chain cDNA. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7405–7409. doi: 10.1073/pnas.77.12.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pawlita M., Potter M., Rudikoff S. kappa-Chain restriction in anti-galactan antibodies. J Immunol. 1982 Aug;129(2):615–618. [PubMed] [Google Scholar]
  15. Pech M., Höchtl J., Schnell H., Zachau H. G. Differences between germ-line and rearranged immunoglobulin V kappa coding sequences suggest a localized mutation mechanism. Nature. 1981 Jun 25;291(5817):668–670. doi: 10.1038/291668a0. [DOI] [PubMed] [Google Scholar]
  16. Rudikoff S., Pawlita M., Pumphrey J., Heller M. Somatic diversification of immunoglobulins. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2162–2166. doi: 10.1073/pnas.81.7.2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sakano H., Hüppi K., Heinrich G., Tonegawa S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature. 1979 Jul 26;280(5720):288–294. doi: 10.1038/280288a0. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Segal D. M., Padlan E. A., Cohen G. H., Rudikoff S., Potter M., Davies D. R. The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4298–4302. doi: 10.1073/pnas.71.11.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Selsing E., Storb U. Somatic mutation of immunoglobulin light-chain variable-region genes. Cell. 1981 Jul;25(1):47–58. doi: 10.1016/0092-8674(81)90230-0. [DOI] [PubMed] [Google Scholar]
  21. Siegelman M., Capra J. D. Complete amino acid sequence of light chain variable regions derived from five monoclonal anti-p-azophenylarsonate antibodies differing with respect to a crossreactive idiotype. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7679–7683. doi: 10.1073/pnas.78.12.7679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith-Gill S. J., Hamel P. A., Klein M. H., Rudikoff S., Dorrington K. J. Contribution of the VK4 light chain to antibody specificity for lysozyme and beta (1,6)D-galactan. Mol Immunol. 1986 Sep;23(9):919–926. doi: 10.1016/0161-5890(86)90121-5. [DOI] [PubMed] [Google Scholar]
  23. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  24. Weigert M., Gatmaitan L., Loh E., Schilling J., Hood L. Rearrangement of genetic information may produce immunoglobulin diversity. Nature. 1978 Dec 21;276(5690):785–790. doi: 10.1038/276785a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES