Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Oct 1;166(4):999–1010. doi: 10.1084/jem.166.4.999

Induction of interferon alpha from human lymphocytes by autologous, dengue virus-infected monocytes

PMCID: PMC2188728  PMID: 3116147

Abstract

Human monocytes actively replicate dengue virus. To dissect the primary immune responses to dengue virus-infected monocytes (DV-monocytes), we analyzed the interaction between autologous DV-monocytes and the peripheral blood lymphocytes (PBL) of dengue nonimmune donors. Interferon (IFN) activity was detected when PBL were cultured with DV- monocytes. Cell contact between PBL and DV-monocytes was required for IFN production; however, MHC compatibility between PBL and monocytes was not necessary. DV-monocytes fixed with paraformaldehyde or glutaraldehyde, which produced no infectious virus, also induced high levels of IFN from PBL. The ability of DV-monocytes to induce IFN correlated with the appearance of dengue antigens. The PBL that produce IFN were characterized by FACS sorting using monoclonal and polyclonal antibodies. HLA-DR+ and T3- cells produced high titers of IFN, while HLA-DR- and T3+ cells produced very low or undetectable levels of IFN. Moderate titers of IFN were produced by cells contained in B cell fractions (surface immunoglobulin-positive, B1+, and Leu-12+), and cells contained in natural killer cell fractions (Leu-11+ and OKM1+). Therefore, IFN-producing cells are heterogeneous, and the predominant producer cells are characterized as HLA-DR+ and non-T lymphocytes. The IFN produced was characterized by RIA using mAbs to IFN-alpha and IFN- gamma. The IFN-alpha was the predominant IFN produced; in addition, a low level of IFN-gamma was also detected in some experiments. The culture fluids obtained from PBL exposed to autologous DV-monocytes, which contained high IFN activity, completely inhibited dengue virus infection of monocytes. These results suggest that IFN-alpha produced by PBL exposed to DV-monocytes may play an important role in controlling primary dengue virus infection.

Full Text

The Full Text of this article is available as a PDF (669.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boonpucknavig S., Boonpucknavig V., Bhamarapravati N., Nimmannitya S. Immunofluorescence study of skin rash in patients with dengue hemorrhagic fever. Arch Pathol Lab Med. 1979 Aug;103(9):463–466. [PubMed] [Google Scholar]
  2. Boonpucknavig V., Bhamarapravati N., Boonpucknavig S., Futrakul P., Tanpaichitr P. Glomerular changes in dengue hemorrhagic fever. Arch Pathol Lab Med. 1976 Apr;100(4):206–212. [PubMed] [Google Scholar]
  3. Breard J., Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. A monoclonal antibody reactive with human peripheral blood monocytes. J Immunol. 1980 Apr;124(4):1943–1948. [PubMed] [Google Scholar]
  4. Djeu J. Y., Stocks N., Zoon K., Stanton G. J., Timonen T., Herberman R. B. Positive self regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes viruses. J Exp Med. 1982 Oct 1;156(4):1222–1234. doi: 10.1084/jem.156.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ennis F. A., Meager A. Immune interferon produced to high levels by antigenic stimulation of human lymphocytes with influenza virus. J Exp Med. 1981 Nov 1;154(5):1279–1289. doi: 10.1084/jem.154.5.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Exley T., Parti S., Barwick S., Meager A. A comparison of the neutralizing properties of monoclonal and polyclonal antibodies to human interferon alpha. J Gen Virol. 1984 Dec;65(Pt 12):2277–2280. doi: 10.1099/0022-1317-65-12-2277. [DOI] [PubMed] [Google Scholar]
  7. Halstead S. B., O'Rourke E. J., Allison A. C. Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection. J Exp Med. 1977 Jul 1;146(1):218–229. doi: 10.1084/jem.146.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herberman R. R., Ortaldo J. R., Bonnard G. D. Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature. 1979 Jan 18;277(5693):221–223. doi: 10.1038/277221a0. [DOI] [PubMed] [Google Scholar]
  9. Ito Y., Hosaka Y. Component(s) of Sendai virus that can induce interferon in mouse spleen cells. Infect Immun. 1983 Mar;39(3):1019–1023. doi: 10.1128/iai.39.3.1019-1023.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kumagai K., Itoh K., Hinuma S., Tada M. Pretreatment of plastic Petri dishes with fetal calf serum. A simple method for macrophage isolation. J Immunol Methods. 1979;29(1):17–25. doi: 10.1016/0022-1759(79)90121-2. [DOI] [PubMed] [Google Scholar]
  11. Kung P., Goldstein G., Reinherz E. L., Schlossman S. F. Monoclonal antibodies defining distinctive human T cell surface antigens. Science. 1979 Oct 19;206(4416):347–349. doi: 10.1126/science.314668. [DOI] [PubMed] [Google Scholar]
  12. Kurane I., Hebblewaite D., Brandt W. E., Ennis F. A. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J Virol. 1984 Oct;52(1):223–230. doi: 10.1128/jvi.52.1.223-230.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kurane I., Meager A., Ennis F. A. Induction of interferon alpha and gamma from human lymphocytes by dengue virus-infected cells. J Gen Virol. 1986 Aug;67(Pt 8):1653–1661. doi: 10.1099/0022-1317-67-8-1653. [DOI] [PubMed] [Google Scholar]
  14. LEVY H. B., AXELROD D., BARON S. MESSENGER RNA FOR INTERFERON PRODUCTION. Proc Soc Exp Biol Med. 1965 Feb;118:384–385. doi: 10.3181/00379727-118-29850. [DOI] [PubMed] [Google Scholar]
  15. Lanier L. L., Phillips J. H., Warner N. L., Babcock G. F. A human natural killer cell-associated antigen defined by monoclonal antibody anti-Leu (NKP-15): functional and two-color flow cytometry analysis. J Leukoc Biol. 1984 Jan;35(1):11–17. doi: 10.1002/jlb.35.1.11. [DOI] [PubMed] [Google Scholar]
  16. Lebon P. Inhibition of herpes simplex virus type 1-induced interferon synthesis by monoclonal antibodies against viral glycoprotein D and by lysosomotropic drugs. J Gen Virol. 1985 Dec;66(Pt 12):2781–2786. doi: 10.1099/0022-1317-66-12-2781. [DOI] [PubMed] [Google Scholar]
  17. Lindahl P., Leary P., Gresser I. Enhancement by interferon of the specific cytotoxicity of sensitized lymphocytes. Proc Natl Acad Sci U S A. 1972 Mar;69(3):721–725. doi: 10.1073/pnas.69.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meager A., Parti S., Barwick S., Spragg J., O'Hagan K. Detection of hybridomas secreting monoclonal antibodies to human gamma interferon using a rapid screening technique and specificity of certain monoclonal antibodies to gamma interferon. J Interferon Res. 1984 Fall;4(4):619–625. doi: 10.1089/jir.1984.4.619. [DOI] [PubMed] [Google Scholar]
  19. Meeker T. C., Miller R. A., Link M. P., Bindl J., Warnke R., Levy R. A unique human B lymphocyte antigen defined by a monoclonal antibody. Hybridoma. 1984 Winter;3(4):305–320. doi: 10.1089/hyb.1984.3.305. [DOI] [PubMed] [Google Scholar]
  20. Narayan O., Sheffer D., Clements J. E., Tennekoon G. Restricted replication of lentiviruses. Visna viruses induce a unique interferon during interaction between lymphocytes and infected macrophages. J Exp Med. 1985 Dec 1;162(6):1954–1969. doi: 10.1084/jem.162.6.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neubauer R. H., Goldstein L., Rabin H., Stebbing N. Stimulation of in vitro immunoglobulin production by interferon-alpha. J Immunol. 1985 Jan;134(1):299–304. [PubMed] [Google Scholar]
  22. Nisalak A., Halstead S. B., Singharaj P., Udomsakdi S., Nye S. W., Vinijchaikul K. Observations related to pathogenesis of dengue hemorrhagic fever. 3. Virologic studies of fatal disease. Yale J Biol Med. 1970 Apr;42(5):293–310. [PMC free article] [PubMed] [Google Scholar]
  23. Perussia B., Fanning V., Trinchieri G. A leukocyte subset bearing HLA-DR antigens is responsible for in vitro alpha interferon production in response to viruses. Nat Immun Cell Growth Regul. 1985;4(3):120–137. [PubMed] [Google Scholar]
  24. Stashenko P., Nadler L. M., Hardy R., Schlossman S. F. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980 Oct;125(4):1678–1685. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES