Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Oct 1;166(4):1070–1083. doi: 10.1084/jem.166.4.1070

Resistance of cloned cytotoxic T lymphocytes to cell-mediated cytotoxicity

PMCID: PMC2188734  PMID: 3498787

Abstract

Cloned CTLs show an unusually high resistance to lysis by effector CTLs. Several cloned CTL lines in our laboratories are absolutely refractory to lysis by other cloned CTLs, either (a) directly, (b) in the presence of lectin, or (c) by PMA-induced CTLs. They can be lysed to some extent by primary CTL, although they are less than 5% as sensitive as target cells normally used to assay primary CTL lytic activity. Lysis of cloned CTLs by primary CTL effector cells is not enhanced by the presence of lectin, and cloned T cells are also highly resistant to lysis by primary lymphokine-activated killer cells. Cloned CTLs are highly resistant to lysis by isolated CTL granules that contain the membranolytic pore-forming protein (PFP or perforin), while non-CTL targets are highly susceptible to granule-mediated killing, indicating that cloned CTLs resist lysis not only at the intact effector cell level but also when soluble effector proteins are used. This resistance mechanism may explain how CTLs kill but spare themselves from being killed during the cytolytic event.

Full Text

The Full Text of this article is available as a PDF (874.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acha-Orbea H., Groscurth P., Lang R., Stitz L., Hengartner H. Characterization of cloned cytotoxic lymphocytes with NK-like activity. J Immunol. 1983 Jun;130(6):2952–2959. [PubMed] [Google Scholar]
  2. Berke G., Amos D. B. Cytotoxic lymphocytes in the absence of detectable antibody. Nat New Biol. 1973 Apr 25;242(121):237–239. doi: 10.1038/newbio242237a0. [DOI] [PubMed] [Google Scholar]
  3. Berke G. Cytotoxic T-lymphocytes. How do they function? Immunol Rev. 1983;72:5–42. doi: 10.1111/j.1600-065x.1983.tb01071.x. [DOI] [PubMed] [Google Scholar]
  4. Berke G., Sullivan K. A., Amos D. B. Tumor immunity in vitro: destruction of a mouse ascites tumor through a cycling pathway. Science. 1972 Aug 4;177(4047):433–434. doi: 10.1126/science.177.4047.433. [DOI] [PubMed] [Google Scholar]
  5. Brooks C. G. Reversible induction of natural killer cell activity in cloned murine cytotoxic T lymphocytes. Nature. 1983 Sep 8;305(5930):155–158. doi: 10.1038/305155a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dennert G., Anderson C. G., Prochazka G. High activity of N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase and cytolytic perforin in cloned cell lines is not demonstrable in in-vivo-induced cytotoxic effector cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5004–5008. doi: 10.1073/pnas.84.14.5004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fishelson Z., Berke G. T lymphocyte-mediated cytolysis: dissociation of the binding and lytic mechanisms of the effector cell. J Immunol. 1978 Apr;120(4):1121–1126. [PubMed] [Google Scholar]
  8. Grimm E. A., Robb R. J., Roth J. A., Neckers L. M., Lachman L. B., Wilson D. J., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. III. Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells. J Exp Med. 1983 Oct 1;158(4):1356–1361. doi: 10.1084/jem.158.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henkart P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985;3:31–58. doi: 10.1146/annurev.iy.03.040185.000335. [DOI] [PubMed] [Google Scholar]
  10. Kane K. P., Clark W. R. Class I MHC antigens in the generation and expression of promiscuous cytotoxic cell function. J Immunol. 1986 Nov 15;137(10):3080–3086. [PubMed] [Google Scholar]
  11. Kranz D. M., Eisen H. N. Resistance of cytotoxic T lymphocytes to lysis by a clone of cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1987 May;84(10):3375–3379. doi: 10.1073/pnas.84.10.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krensky A. M., Robbins E., Springer T. A., Burakoff S. J. LFA-1, LFA-2, and LFA-3 antigens are involved in CTL-target conjugation. J Immunol. 1984 May;132(5):2180–2182. [PubMed] [Google Scholar]
  13. Kuppers R. C., Henney C. S. Evidence for direct linkage between antigen recognition and lytic expression in effector T cells. J Exp Med. 1976 Mar 1;143(3):684–689. doi: 10.1084/jem.143.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuppers R. C., Henney C. S. Studies on the mechanism of lymphocyte-mediated cytolysis. IX. Relationships between antigen recognition and lytic expression in killer T cells. J Immunol. 1977 Jan;118(1):71–76. [PubMed] [Google Scholar]
  15. Luciani M. F., Brunet J. F., Suzan M., Denizot F., Golstein P. Self-sparing of long-term in vitro-cloned or uncloned cytotoxic T lymphocytes. J Exp Med. 1986 Sep 1;164(3):962–967. doi: 10.1084/jem.164.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MacDonald H. R., Glasebrook A. L., Acuto O., Kelso A., Bron C., Cerottini J. C. Heterogeneity of inhibition of cytolytic T lymphocyte clones by monoclonal anti-Lyt-2/3 antibodies: parallel effects on cytolysis, proliferation and lymphokine secretion. Adv Exp Med Biol. 1982;146:533–545. doi: 10.1007/978-1-4684-8959-0_32. [DOI] [PubMed] [Google Scholar]
  17. Martz E. Mechanism of specific tumor-cell lysis by alloimmune T lymphocytes: resolution and characterization of discrete steps in the cellular interaction. Contemp Top Immunobiol. 1977;7:301–361. doi: 10.1007/978-1-4684-3054-7_9. [DOI] [PubMed] [Google Scholar]
  18. Masson D., Tschopp J. Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes. J Biol Chem. 1985 Aug 5;260(16):9069–9072. [PubMed] [Google Scholar]
  19. Palladino M. A., Obata Y., Stockert E., Oettgen H. F. Characterization of interleukin 2-dependent cytotoxic T-cell clones: specificity, cell surface phenotype, and susceptibility to blocking by Lyt antisera. Cancer Res. 1983 Feb;43(2):572–576. [PubMed] [Google Scholar]
  20. Russell J. H. Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol Rev. 1983;72:97–118. doi: 10.1111/j.1600-065x.1983.tb01074.x. [DOI] [PubMed] [Google Scholar]
  21. Russell J. H. Phorbol-ester stimulated lysis of weak and nonspecific target cells by cytotoxic T lymphocytes. J Immunol. 1986 Jan;136(1):23–27. [PubMed] [Google Scholar]
  22. Schönermark S., Rauterberg E. W., Shin M. L., Löke S., Roelcke D., Hänsch G. M. Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol. 1986 Mar 1;136(5):1772–1776. [PubMed] [Google Scholar]
  23. Shortman K., Wilson A., Scollay R. Loss of specificity in cytolytic T lymphocyte clones obtained by limit dilution culture of Ly-2+ T cells. J Immunol. 1984 Feb;132(2):584–593. [PubMed] [Google Scholar]
  24. Teh H. S., Yu M. Activation of nonspecific killer cells by interleukin 2-containing supernatants. J Immunol. 1983 Oct;131(4):1827–1833. [PubMed] [Google Scholar]
  25. Tschopp J., Masson D., Stanley K. K. Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. 1986 Aug 28-Sep 3Nature. 322(6082):831–834. doi: 10.1038/322831a0. [DOI] [PubMed] [Google Scholar]
  26. Young J. D., Cohn Z. A. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol. 1987;41:269–332. doi: 10.1016/s0065-2776(08)60033-4. [DOI] [PubMed] [Google Scholar]
  27. Young J. D., Hengartner H., Podack E. R., Cohn Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell. 1986 Mar 28;44(6):849–859. doi: 10.1016/0092-8674(86)90007-3. [DOI] [PubMed] [Google Scholar]
  28. Young J. D., Liu C. C., Leong L. G., Cohn Z. A. The pore-forming protein (perforin) of cytolytic T lymphocytes is immunologically related to the components of membrane attack complex of complement through cysteine-rich domains. J Exp Med. 1986 Dec 1;164(6):2077–2082. doi: 10.1084/jem.164.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Young J. D., Podack E. R., Cohn Z. A. Properties of a purified pore-forming protein (perforin 1) isolated from H-2-restricted cytotoxic T cell granules. J Exp Med. 1986 Jul 1;164(1):144–155. doi: 10.1084/jem.164.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zalman L. S., Brothers M. A., Chiu F. J., Müller-Eberhard H. J. Mechanism of cytotoxicity of human large granular lymphocytes: relationship of the cytotoxic lymphocyte protein to the ninth component (C9) of human complement. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5262–5266. doi: 10.1073/pnas.83.14.5262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zalman L. S., Wood L. M., Müller-Eberhard H. J. Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6975–6979. doi: 10.1073/pnas.83.18.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES