Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Oct 1;166(4):833–849. doi: 10.1084/jem.166.4.833

Generation of continuous large granular lymphocyte lines by interleukin 2 from the spleen cells of mice infected with Moloney leukemia virus. Involvement of interleukin 3

PMCID: PMC2188738  PMID: 2443601

Abstract

Continuous cell lines could be reproducibly established by culturing spleen cells from adult mice injected with MLV-producer cells or directly infected with Mo-MLV with rIL-2, whereas the culture of normal splenic cells with rIL-2 induced only transient and limited proliferation resulting in no such lines. All of the lines showed morphological characteristics as LGL with Thy-1+,Lyt-1-,L3T4-,Lyt-2- ,AsGM1+,FcR gamma+ phenotype without exception, and most of them exhibited typical NK-patterned cytotoxicity. Analysis of reverse transcriptase activity of the culture supernatants as well as Southern hybridization of the DNA from the lines using an Mo-MLV-specific cDNA probe indicated no evidence of retroviral replication or proviral integration, suggesting that the generation of cell lines reflected a reactive process and viral infection was not directly responsible. It was subsequently revealed that Thy-1+,Lyt-1+,Lyt-2- spleen cells from mice infected with Mo-MLV in vivo spontaneously produced surprising amounts of IL-3 in vitro, leading to the possibility that IL-3 was responsible for the generation of lines. The possibility was directly supported by the observation that continuous lines with identical characteristics could be generated completely in vitro by sequential stimulation with rIL-3 and rIL-2 from normal spleen cells without any involvement of Mo-MLV. The C beta gene of TCR was shown to be rearranged in all the lines examined, indicating the LGL lines were all genetically committed to T cell lineage. Unlike the situation in normal splenic populations expanded by rIL-2, where the expression of IL-2-R was progressively lost, constitutive expression of high-affinity-IL-2-R was observed in all the lines and thus, this was considered to explain the unlimited proliferation of them in response to rIL-2 alone. These results suggested the probable role of IL-3 in the regulation of growth and differentiation of a set of LGL committed to T cell lineage. The possible implications of the phenomenon in the regulation of hematopoiesis as well as in the control of Mo-MLV-induced leukemogenesis were discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S. A., Jainchill J. L., Todaro G. J. Murine sarcoma virus transformation of BALB-3T3 cells: lack of dependence on murine leukemia virus. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1236–1243. doi: 10.1073/pnas.66.4.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bazill G. W., Haynes M., Garland J., Dexter T. M. Characterization and partial purification of a haemopoietic cell growth factor in WEHI-3 cell conditioned medium. Biochem J. 1983 Mar 15;210(3):747–759. doi: 10.1042/bj2100747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birchenall-Sparks M. C., Farrar W. L., Rennick D., Kilian P. L., Ruscetti F. W. Regulation of expression of the interleukin-2 receptor on hematopoietic cells by interleukin-3. Science. 1986 Jul 25;233(4762):455–458. doi: 10.1126/science.3088729. [DOI] [PubMed] [Google Scholar]
  4. Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  5. Brenner M. B., McLean J., Scheft H., Riberdy J., Ang S. L., Seidman J. G., Devlin P., Krangel M. S. Two forms of the T-cell receptor gamma protein found on peripheral blood cytotoxic T lymphocytes. Nature. 1987 Feb 19;325(6106):689–694. doi: 10.1038/325689a0. [DOI] [PubMed] [Google Scholar]
  6. Dorshkind K., Pollack S. B., Bosma M. J., Phillips R. A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol. 1985 Jun;134(6):3798–3801. [PubMed] [Google Scholar]
  7. Enjuanes L., Lee J. C., Ihle J. N. T cell recognition of Moloney sarcoma virus proteins during tumor regression. I. Lack of a requirement for macrophages and the role of blastogenic factors in T cell proliferation. J Immunol. 1981 Apr;126(4):1478–1484. [PubMed] [Google Scholar]
  8. Enjuanes L., Lee J. C., Ihle J. N. T cell recognition of Moloney sarcoma virus proteins during tumor regression. I. Lack of a requirement for macrophages and the role of blastogenic factors in T cell proliferation. J Immunol. 1981 Apr;126(4):1478–1484. [PubMed] [Google Scholar]
  9. Gidlund M., Orn A., Wigzell H., Senik A., Gresser I. Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature. 1978 Jun 29;273(5665):759–761. doi: 10.1038/273759a0. [DOI] [PubMed] [Google Scholar]
  10. Goff S., Traktman P., Baltimore D. Isolation and properties of Moloney murine leukemia virus mutants: use of a rapid assay for release of virion reverse transcriptase. J Virol. 1981 Apr;38(1):239–248. doi: 10.1128/jvi.38.1.239-248.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hapel A. J., Lee J. C., Farrar W. L., Ihle J. N. Establishment of continuous cultures of thy1.2+, Lyt1+, 2-T cells with purified interleukin 3. Cell. 1981 Jul;25(1):179–186. doi: 10.1016/0092-8674(81)90242-7. [DOI] [PubMed] [Google Scholar]
  12. Hercend T., Reinherz E. L., Meuer S., Schlossman S. F., Ritz J. Phenotypic and functional heterogeneity of human cloned natural killer cell lines. Nature. 1983 Jan 13;301(5896):158–160. doi: 10.1038/301158a0. [DOI] [PubMed] [Google Scholar]
  13. Holmberg L. A., Miller B. A., Ault K. A. The effect of natural killer cells on the development of syngeneic hematopoietic progenitors. J Immunol. 1984 Dec;133(6):2933–2939. [PubMed] [Google Scholar]
  14. Ikuta K., Hattori M., Wake K., Kano S., Honjo T., Yodoi J., Minato N. Expression and rearrangement of the alpha, beta, and gamma chain genes of the T cell receptor in cloned murine large granular lymphocyte lines. No correlation with the cytotoxic spectrum. J Exp Med. 1986 Aug 1;164(2):428–442. doi: 10.1084/jem.164.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kajigaya S., Kubota K., Minato N., Sudo T., Hatake K., Iizuka M., Kobayashi S., Saito M., Kano S., Miura Y. A murine cell line (2E10.4.13) produces five hemopoietic stimulators, and interleukin-2 and interleukin-3. Cell Struct Funct. 1985 Jun;10(2):121–131. doi: 10.1247/csf.10.121. [DOI] [PubMed] [Google Scholar]
  16. Kajigaya S., Suda T., Suda J., Saito M., Miura Y., Iizuka M., Kobayashi S., Minato N., Sudo T. A recombinant murine granulocyte/macrophage (GM) colony-stimulating factor derived from an inducer T cell line (IH5.5). Functional restriction to GM progenitor cells. J Exp Med. 1986 Oct 1;164(4):1102–1113. doi: 10.1084/jem.164.4.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koning F., Stingl G., Yokoyama W. M., Yamada H., Maloy W. L., Tschachler E., Shevach E. M., Coligan J. E. Identification of a T3-associated gamma delta T cell receptor on Thy-1+ dendritic epidermal Cell lines. Science. 1987 May 15;236(4803):834–837. doi: 10.1126/science.2883729. [DOI] [PubMed] [Google Scholar]
  18. Kuribayashi K., Gillis S., Kern D. E., Henney C. S. Murine NK cell cultures: effects of interleukin-2 and interferon on cell growth and cytotoxic reactivity. J Immunol. 1981 Jun;126(6):2321–2327. [PubMed] [Google Scholar]
  19. Lanier L. L., Cwirla S., Federspiel N., Phillips J. H. Human natural killer cells isolated from peripheral blood do not rearrange T cell antigen receptor beta chain genes. J Exp Med. 1986 Jan 1;163(1):209–214. doi: 10.1084/jem.163.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J. C., Horak I., Ihle J. N. Mechanisms in T cell leukemogenesis. II. T cell responses of preleukemic BALB/c mice to Moloney leukemia virus antigens. J Immunol. 1981 Feb;126(2):715–722. [PubMed] [Google Scholar]
  21. Loughran T. P., Jr, Hammond W. P., 4th Adult-onset cyclic neutropenia is a benign neoplasm associated with clonal proliferation of large granular lymphocytes. J Exp Med. 1986 Dec 1;164(6):2089–2094. doi: 10.1084/jem.164.6.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MOLONEY J. B. Biological studies on a lymphoid-leukemia virus extracted from sarcoma 37. I. Origin and introductory investigations. J Natl Cancer Inst. 1960 Apr;24:933–951. [PubMed] [Google Scholar]
  23. Mangan K. F., Hartnett M. E., Matis S. A., Winkelstein A., Abo T. Natural killer cells suppress human erythroid stem cell proliferation in vitro. Blood. 1984 Feb;63(2):260–269. [PubMed] [Google Scholar]
  24. Minato N., Amagai T., Yodoi J., Diamanstein T., Kano S. Regulation of the growth and functions of cloned murine large granular lymphocyte lines by resident macrophages. J Exp Med. 1985 Oct 1;162(4):1161–1181. doi: 10.1084/jem.162.4.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Minato N., Reid L., Bloom B. R. On the heterogeneity of murine natural killer cells. J Exp Med. 1981 Sep 1;154(3):750–762. doi: 10.1084/jem.154.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  27. Nakanishi N., Maeda K., Ito K., Heller M., Tonegawa S. T gamma protein is expressed on murine fetal thymocytes as a disulphide-linked heterodimer. Nature. 1987 Feb 19;325(6106):720–723. doi: 10.1038/325720a0. [DOI] [PubMed] [Google Scholar]
  28. Niwa O. Suppression of the hypomethylated Moloney leukemia virus genome in undifferentiated teratocarcinoma cells and inefficiency of transformation by a bacterial gene under control of the long terminal repeat. Mol Cell Biol. 1985 Sep;5(9):2325–2331. doi: 10.1128/mcb.5.9.2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Okayama H., Berg P. A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol Cell Biol. 1983 Feb;3(2):280–289. doi: 10.1128/mcb.3.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Palacios R. Spontaneous production of interleukin 3 by T lymphocytes from autoimmune MRL/MP-lpr/lpr mice. Eur J Immunol. 1984 Jul;14(7):599–605. doi: 10.1002/eji.1830140704. [DOI] [PubMed] [Google Scholar]
  31. Palacios R., Steinmetz M. Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell. 1985 Jul;41(3):727–734. doi: 10.1016/s0092-8674(85)80053-2. [DOI] [PubMed] [Google Scholar]
  32. Ritz J., Campen T. J., Schmidt R. E., Royer H. D., Hercend T., Hussey R. E., Reinherz E. L. Analysis of T-cell receptor gene rearrangement and expression in human natural killer clones. Science. 1985 Jun 28;228(4707):1540–1543. doi: 10.1126/science.2409597. [DOI] [PubMed] [Google Scholar]
  33. Rowe W. P., Pugh W. E., Hartley J. W. Plaque assay techniques for murine leukemia viruses. Virology. 1970 Dec;42(4):1136–1139. doi: 10.1016/0042-6822(70)90362-4. [DOI] [PubMed] [Google Scholar]
  34. Suzuki R., Handa K., Itoh K., Kumagai K. Natural killer (NK) cells as a responder to interleukin 2 (IL 2). I. Proliferative response and establishment of cloned cells. J Immunol. 1983 Feb;130(2):981–987. [PubMed] [Google Scholar]
  35. Tanaka T., Naruto M., Kawano G. Production of recombinant mouse beta-interferon. J Interferon Res. 1986 Aug;6(4):429–435. doi: 10.1089/jir.1986.6.429. [DOI] [PubMed] [Google Scholar]
  36. Tutt M. M., Kuziel W. A., Hackett J., Jr, Bennett M., Tucker P. W., Kumar V. Murine natural killer cells do not express functional transcripts of the alpha-, beta-, or gamma-chain genes of the T cell receptor. J Immunol. 1986 Nov 1;137(9):2998–3001. [PubMed] [Google Scholar]
  37. Yanagi Y., Caccia N., Kronenberg M., Chin B., Roder J., Rohel D., Kiyohara T., Lauzon R., Toyonaga B., Rosenthal K. Gene rearrangement in cells with natural killer activity and expression of the beta-chain of the T-cell antigen receptor. Nature. 1985 Apr 18;314(6012):631–633. doi: 10.1038/314631a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES