Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Dec 1;172(6):1749–1756. doi: 10.1084/jem.172.6.1749

Stimulation of fibroblast chemotaxis by human recombinant tumor necrosis factor alpha (TNF-alpha) and a synthetic TNF-alpha 31-68 peptide

PMCID: PMC2188741  PMID: 2258704

Abstract

Macrophages are a major source of fibrogenic factors that promote healing of injured tissue. The recruitment of fibroblasts to sites of tissue injury is a prerequisite for optimal repair of tissue damage. In the present study, human recombinant tumor necrosis factor alpha (hrTNF- alpha), a major macrophage-derived cytokine, was demonstrated to be a potent fibroblast chemoattractant, inducing migration at picomolar concentrations. Anti-hrTNF-alpha monoclonal antibody neutralized most of the fibroblast chemotactic activity generated during short-term culture of human peripheral blood monocytes stimulated with bacterial lipopolysaccharide, suggesting that TNF-alpha is a major monocyte- derived fibroblast chemoattractant. The portion of the human TNF-alpha molecule responsible for its chemotactic stimulation of fibroblasts appears to reside in residues 31-68. This region is highly conserved between TNF-alpha and lymphotoxin. This peptide is not only itself chemotactic but is also able to block the chemotactic response of fibroblasts to hrTNF-alpha and vice versa, suggesting that they each mediate fibroblast migration through similar mechanisms. These data further underscore the potential importance of TNF-alpha in modulating a variety of fibroblast functions, including chemotaxis and synthesis of collagen, glycosaminoglycans, interleukin 1 alpha (IL-1 alpha) and - beta, human histocompatibility leukocyte antigen A and B antigens, collagenase, prostaglandin E2, and IL-6.

Full Text

The Full Text of this article is available as a PDF (744.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alitalo K., Hovi T., Vaheri A. Fibronectin is produced by human macrophages. J Exp Med. 1980 Mar 1;151(3):602–613. doi: 10.1084/jem.151.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antoni G., Presentini R., Perin F., Tagliabue A., Ghiara P., Censini S., Volpini G., Villa L., Boraschi D. A short synthetic peptide fragment of human interleukin 1 with immunostimulatory but not inflammatory activity. J Immunol. 1986 Nov 15;137(10):3201–3204. [PubMed] [Google Scholar]
  3. Assoian R. K., Fleurdelys B. E., Stevenson H. C., Miller P. J., Madtes D. K., Raines E. W., Ross R., Sporn M. B. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6020–6024. doi: 10.1073/pnas.84.17.6020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aswanikumar S., Corcoran B., Schiffmann E., Day A. R., Freer R. J., Showell H. J., Becker E. L. Demonstration of a receptor on rabbit neutrophils for chemotactic peptides. Biochem Biophys Res Commun. 1977 Jan 24;74(2):810–817. doi: 10.1016/0006-291x(77)90375-8. [DOI] [PubMed] [Google Scholar]
  5. Austgulen R., Espevik T., Nissen-Meyer J. Fibroblast growth-stimulatory activity released from human monocytes. The contribution of tumour necrosis factor. Scand J Immunol. 1987 Dec;26(6):621–629. doi: 10.1111/j.1365-3083.1987.tb02297.x. [DOI] [PubMed] [Google Scholar]
  6. Aycock R. S., Raghow R., Stricklin G. P., Seyer J. M., Kang A. H. Post-transcriptional inhibition of collagen and fibronectin synthesis by a synthetic homolog of a portion of the carboxyl-terminal propeptide of human type I collagen. J Biol Chem. 1986 Oct 25;261(30):14355–14360. [PubMed] [Google Scholar]
  7. Baum J. L. Source of the fibroblast in central corneal wound healing. Arch Ophthalmol. 1971 Apr;85(4):473–477. doi: 10.1001/archopht.1971.00990050475014. [DOI] [PubMed] [Google Scholar]
  8. Beutler B., Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem. 1988;57:505–518. doi: 10.1146/annurev.bi.57.070188.002445. [DOI] [PubMed] [Google Scholar]
  9. Bonner J. C., Hoffman M., Brody A. R. A platelet-derived growth factor homolog secreted by alveolar macrophages is complexed to an alpha-macroglobulin. Transplant Proc. 1989 Aug;21(4):3704–3705. [PubMed] [Google Scholar]
  10. Butler D. M., Vitti G. F., Leizer T., Hamilton J. A. Stimulation of the hyaluronic acid levels of human synovial fibroblasts by recombinant human tumor necrosis factor alpha, tumor necrosis factor beta (lymphotoxin), interleukin-1 alpha, and interleukin-1 beta. Arthritis Rheum. 1988 Oct;31(10):1281–1289. doi: 10.1002/art.1780311010. [DOI] [PubMed] [Google Scholar]
  11. Collins T., Lapierre L. A., Fiers W., Strominger J. L., Pober J. S. Recombinant human tumor necrosis factor increases mRNA levels and surface expression of HLA-A,B antigens in vascular endothelial cells and dermal fibroblasts in vitro. Proc Natl Acad Sci U S A. 1986 Jan;83(2):446–450. doi: 10.1073/pnas.83.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eck M. J., Sprang S. R. The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem. 1989 Oct 15;264(29):17595–17605. doi: 10.2210/pdb1tnf/pdb. [DOI] [PubMed] [Google Scholar]
  13. Edén S., Kostyo J. L., Schwartz J. Ability of growth hormone fragments to complete with 125I-iodinated human growth hormone for specific binding to isolated adipocytes of hypophysectomized rats. Biochim Biophys Acta. 1982 Dec 30;721(4):489–491. doi: 10.1016/0167-4889(82)90106-9. [DOI] [PubMed] [Google Scholar]
  14. Kang A. H. Studies on the location of intermolecular cross-links in collagen. Isolation of a CNBr peptide containing -hydroxylysinonorleucine. Biochemistry. 1972 May 9;11(10):1828–1835. doi: 10.1021/bi00760a015. [DOI] [PubMed] [Google Scholar]
  15. Kohase M., Henriksen-DeStefano D., May L. T., Vilcek J., Sehgal P. B. Induction of beta 2-interferon by tumor necrosis factor: a homeostatic mechanism in the control of cell proliferation. Cell. 1986 Jun 6;45(5):659–666. doi: 10.1016/0092-8674(86)90780-4. [DOI] [PubMed] [Google Scholar]
  16. Le J. M., Weinstein D., Gubler U., Vilcek J. Induction of membrane-associated interleukin 1 by tumor necrosis factor in human fibroblasts. J Immunol. 1987 Apr 1;138(7):2137–2142. [PubMed] [Google Scholar]
  17. Marasco W. A., Showell H. J., Freer R. J., Becker E. L. Anti-f Met-Leu-Phe: similarities in fine specificity with the formyl peptide chemotaxis receptor of the neutrophil. J Immunol. 1982 Feb;128(2):956–962. [PubMed] [Google Scholar]
  18. Miyazono K., Heldin C. H. Role for carbohydrate structures in TGF-beta 1 latency. Nature. 1989 Mar 9;338(6211):158–160. doi: 10.1038/338158a0. [DOI] [PubMed] [Google Scholar]
  19. Mrowietz U., Schröder J. M., Christophers E. Recombinant human tumor necrosis factor alpha lacks chemotactic activity for human peripheral blood neutrophils and monocytes. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1223–1228. doi: 10.1016/s0006-291x(88)81358-5. [DOI] [PubMed] [Google Scholar]
  20. Pennica D., Nedwin G. E., Hayflick J. S., Seeburg P. H., Derynck R., Palladino M. A., Kohr W. J., Aggarwal B. B., Goeddel D. V. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984 Dec 20;312(5996):724–729. doi: 10.1038/312724a0. [DOI] [PubMed] [Google Scholar]
  21. Postlethwaite A. E., Jackson B. K., Beachey E. H., Kang A. H. Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen-and mitogen-stimulated lymphocytes. J Exp Med. 1982 Jan 1;155(1):168–178. doi: 10.1084/jem.155.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Postlethwaite A. E., Keski-Oja J., Balian G., Kang A. H. Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000-molecular weight non-gelatin-binding fragment. J Exp Med. 1981 Feb 1;153(2):494–499. doi: 10.1084/jem.153.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Postlethwaite A. E., Keski-Oja J., Moses H. L., Kang A. H. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J Exp Med. 1987 Jan 1;165(1):251–256. doi: 10.1084/jem.165.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Postlethwaite A. E., Smith G. N., Jr, Lachman L. B., Endres R. O., Poppleton H. M., Hasty K. A., Seyer J. M., Kang A. H. Stimulation of glycosaminoglycan synthesis in cultured human dermal fibroblasts by interleukin 1. Induction of hyaluronic acid synthesis by natural and recombinant interleukin 1s and synthetic interleukin 1 beta peptide 163-171. J Clin Invest. 1989 Feb;83(2):629–636. doi: 10.1172/JCI113927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Postlethwaite A. E., Snyderman R., Kang A. H. The chemotactic attraction of human fibroblasts to a lymphocyte-derived factor. J Exp Med. 1976 Nov 2;144(5):1188–1203. doi: 10.1084/jem.144.5.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seppä H., Grotendorst G., Seppä S., Schiffmann E., Martin G. R. Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol. 1982 Feb;92(2):584–588. doi: 10.1083/jcb.92.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sharpe R. J., Margolis R. J., Askari M., Amento E. P., Granstein R. D. Induction of dermal and subcutaneous inflammation by recombinant cachectin/tumor necrosis factor (TNF alpha) in the mouse. J Invest Dermatol. 1988 Oct;91(4):353–357. doi: 10.1111/1523-1747.ep12475754. [DOI] [PubMed] [Google Scholar]
  28. Solis-Herruzo J. A., Brenner D. A., Chojkier M. Tumor necrosis factor alpha inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts. J Biol Chem. 1988 Apr 25;263(12):5841–5845. [PubMed] [Google Scholar]
  29. Vilcek J., Palombella V. J., Henriksen-DeStefano D., Swenson C., Feinman R., Hirai M., Tsujimoto M. Fibroblast growth enhancing activity of tumor necrosis factor and its relationship to other polypeptide growth factors. J Exp Med. 1986 Mar 1;163(3):632–643. doi: 10.1084/jem.163.3.632. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES