Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Dec 1;172(6):1831–1841. doi: 10.1084/jem.172.6.1831

Dissociation of the stimulatory activities of staphylococcal enterotoxins for T cells and monocytes

PMCID: PMC2188744  PMID: 2258710

Abstract

The staphylococcal enterotoxins (SEs) are homologous proteins related in their capacity for stimulating both T cells and monocytes. To assess the importance of conserved structure and sequence to functional activity, the role of the disulfide loop and adjacent sequence in these toxins was evaluated. Contrary to previous reports, we demonstrate here that the disulfide loop was required for the mitogenic activity of SEA and SEB. While T cell-stimulatory activity was compromised, reduced and alkylated SEs retained major histocompatibility complex class II- binding and monocyte-stimulatory activities, suggesting that their inability to induce T cell proliferation was due to failure to interact with T cell receptor (TCR) rather than with class II molecules. Reduction and alkylation did not affect the far-ultraviolet circular dichroic spectrum of SEA, suggesting that the loss of mitogenic activity was not associated with significant changes in secondary structure. The disulfide linkage imparts considerable stability to these toxins as peptide cleavages within the loop of SEB were not associated with detectable loss of function, although cleavage in the conserved sequence outside the loop of SEA resulted in loss of mitogenic activity. This report thus establishes a functional role for a conserved element in SEs, the disulfide loop, and further indicates that their class II- and TCR-binding activities can be dissociated.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betley M. J., Mekalanos J. J. Nucleotide sequence of the type A staphylococcal enterotoxin gene. J Bacteriol. 1988 Jan;170(1):34–41. doi: 10.1128/jb.170.1.34-41.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blomster-Hautamaa D. A., Kreiswirth B. N., Kornblum J. S., Novick R. P., Schlievert P. M. The nucleotide and partial amino acid sequence of toxic shock syndrome toxin-1. J Biol Chem. 1986 Nov 25;261(33):15783–15786. [PubMed] [Google Scholar]
  3. Blomster-Hautamaa D. A., Novick R. P., Schlievert P. M. Localization of biologic functions of toxic shock syndrome toxin-1 by use of monoclonal antibodies and cyanogen bromide-generated toxin fragments. J Immunol. 1986 Dec 1;137(11):3572–3576. [PubMed] [Google Scholar]
  4. Bohach G. A., Handley J. P., Schlievert P. M. Biological and immunological properties of the carboxyl terminus of staphylococcal enterotoxin C1. Infect Immun. 1989 Jan;57(1):23–28. doi: 10.1128/iai.57.1.23-28.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  6. Carlsson R., Fischer H., Sjögren H. O. Binding of staphylococcal enterotoxin A to accessory cells is a requirement for its ability to activate human T cells. J Immunol. 1988 Apr 15;140(8):2484–2488. [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  8. Ezepchuk YuV, Noskov A. N. NH2-terminal localization of that part of the staphylococcal enterotoxins polypeptide chain responsible for binding with membrane receptor and mitogenic effect. Int J Biochem. 1986;18(5):485–488. doi: 10.1016/0020-711x(86)90194-1. [DOI] [PubMed] [Google Scholar]
  9. Fast D. J., Schlievert P. M., Nelson R. D. Nonpurulent response to toxic shock syndrome toxin 1-producing Staphylococcus aureus. Relationship to toxin-stimulated production of tumor necrosis factor. J Immunol. 1988 Feb 1;140(3):949–953. [PubMed] [Google Scholar]
  10. Fischer H., Dohlsten M., Lindvall M., Sjögren H. O., Carlsson R. Binding of staphylococcal enterotoxin A to HLA-DR on B cell lines. J Immunol. 1989 May 1;142(9):3151–3157. [PubMed] [Google Scholar]
  11. Fleischer B., Schrezenmeier H. T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J Exp Med. 1988 May 1;167(5):1697–1707. doi: 10.1084/jem.167.5.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fraser J. D. High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature. 1989 May 18;339(6221):221–223. doi: 10.1038/339221a0. [DOI] [PubMed] [Google Scholar]
  13. GUNDLACH H. G., MOORE S., STEIN W. H. The reaction of iodoacetate with methionine. J Biol Chem. 1959 Jul;234(7):1761–1764. [PubMed] [Google Scholar]
  14. Huang I. Y., Hughes J. L., Bergdoll M. S., Schantz E. J. Complete amino acid sequence of staphylococcal enterotoxin A. J Biol Chem. 1987 May 25;262(15):7006–7013. [PubMed] [Google Scholar]
  15. Iandolo J. J. Genetic analysis of extracellular toxins of Staphylococcus aureus. Annu Rev Microbiol. 1989;43:375–402. doi: 10.1146/annurev.mi.43.100189.002111. [DOI] [PubMed] [Google Scholar]
  16. Jupin C., Anderson S., Damais C., Alouf J. E., Parant M. Toxic shock syndrome toxin 1 as an inducer of human tumor necrosis factors and gamma interferon. J Exp Med. 1988 Mar 1;167(3):752–761. doi: 10.1084/jem.167.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kappler J., Kotzin B., Herron L., Gelfand E. W., Bigler R. D., Boylston A., Carrel S., Posnett D. N., Choi Y., Marrack P. V beta-specific stimulation of human T cells by staphylococcal toxins. Science. 1989 May 19;244(4906):811–813. doi: 10.1126/science.2524876. [DOI] [PubMed] [Google Scholar]
  18. Klohe E. P., Watts R., Bahl M., Alber C., Yu W. Y., Anderson R., Silver J., Gregersen P. K., Karr R. W. Analysis of the molecular specificities of anti-class II monoclonal antibodies by using L cell transfectants expressing HLA class II molecules. J Immunol. 1988 Sep 15;141(6):2158–2164. [PubMed] [Google Scholar]
  19. Kokan-Moore N. P., Bergdoll M. S. Determination of biologically active region in toxic shock syndrome toxin 1. Rev Infect Dis. 1989 Jan-Feb;11 (Suppl 1):S125–S129. [PubMed] [Google Scholar]
  20. Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 May 11;248(4956):705–711. doi: 10.1126/science.2185544. [DOI] [PubMed] [Google Scholar]
  21. Mollick J. A., Cook R. G., Rich R. R. Class II MHC molecules are specific receptors for staphylococcus enterotoxin A. Science. 1989 May 19;244(4906):817–820. doi: 10.1126/science.2658055. [DOI] [PubMed] [Google Scholar]
  22. Noskova V. P., Ezepchuk YuV, Noskov A. N. Topology of the functions in molecule of staphylococcal enterotoxin Type A. Int J Biochem. 1984;16(2):201–206. doi: 10.1016/0020-711x(84)90073-9. [DOI] [PubMed] [Google Scholar]
  23. Pontzer C. H., Russell J. K., Johnson H. M. Localization of an immune functional site on staphylococcal enterotoxin A using the synthetic peptide approach. J Immunol. 1989 Jul 1;143(1):280–284. [PubMed] [Google Scholar]
  24. Reynolds D., Tranter H. S., Sage R., Hambleton P. Novel method for purification of staphylococcal enterotoxin A. Appl Environ Microbiol. 1988 Jul;54(7):1761–1765. doi: 10.1128/aem.54.7.1761-1765.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rich R. R., Mollick J. A., Cook R. G. Superantigens: interaction of staphylococcal enterotoxins with MHC class II molecules. Trans Am Clin Climatol Assoc. 1990;101:195–206. [PMC free article] [PubMed] [Google Scholar]
  26. Schmidt J. J., Spero L. The complete amino acid sequence of staphylococcal enterotoxin C1. J Biol Chem. 1983 May 25;258(10):6300–6306. [PubMed] [Google Scholar]
  27. Scholl P., Diez A., Mourad W., Parsonnet J., Geha R. S., Chatila T. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4210–4214. doi: 10.1073/pnas.86.11.4210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sekaly R. P., Tonnelle C., Strubin M., Mach B., Long E. O. Cell surface expression of class II histocompatibility antigens occurs in the absence of the invariant chain. J Exp Med. 1986 Nov 1;164(5):1490–1504. doi: 10.1084/jem.164.5.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singh B. R., Betley M. J. Comparative structural analysis of staphylococcal enterotoxins A and E. J Biol Chem. 1989 Mar 15;264(8):4404–4411. [PubMed] [Google Scholar]
  30. Spero L., Morlock B. A. Biological activities of the peptides of staphylococcal enterotoxin C formed by limited tryptic hydrolysis. J Biol Chem. 1978 Dec 25;253(24):8787–8791. [PubMed] [Google Scholar]
  31. Spero L., Warren J. R., Metzger J. F. Effect of single peptide bond scission by trypsin on the structure and activity of staphylococcal enterotoxin B. J Biol Chem. 1973 Nov 10;248(21):7289–7294. [PubMed] [Google Scholar]
  32. Weeks C. R., Ferretti J. J. Nucleotide sequence of the type A streptococcal exotoxin (erythrogenic toxin) gene from Streptococcus pyogenes bacteriophage T12. Infect Immun. 1986 Apr;52(1):144–150. doi: 10.1128/iai.52.1.144-150.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES