Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Dec 1;172(6):1673–1680. doi: 10.1084/jem.172.6.1673

Complement-mediated tumor cell damage induced by antibodies against membrane cofactor protein (MCP, CD46)

PMCID: PMC2188751  PMID: 2258699

Abstract

We have developed polyclonal and monoclonal antibodies against human membrane cofactor protein (MCP) to use as tools to investigate the functions of MCP on intact nucleated cells. Two human T cell lines, CEM and TALL, are CR1- and DAF-. Pretreatment of these cell lines with M177 and polyclonal anti-MCP, which inhibit cofactor activity almost completely, resulted in effective C3 deposition immediately following addition of these cells to Mg2+/EGTA/human sera. The deposited C3 remained expressed partly on the cell surface and most of them were gradually converted to C3bi. Some of the deposited C3 were complexed with membrane proteins, since 140- and 250-kD bands became significantly accumulated on SDS-PAGE by treatment with the antibodies. We next tested whether these C3-coated cells were damaged by complement- mediated cytolysis. p18, an inhibitor of membrane attack complex (MAC) formation, was negative in TALL but positive in CEM. TALL was lysed efficiently only by treatment with the polyclonal anti-MCP, while CEM showed only slight lysis with the same treatment. Monoclonal antibodies to MCP, including M177, caused only minimal cell destruction. Based on these results, together with the fact that decay-accelerating factor (DAF) serves as a factor for preventing C3 attack on human cells, we conclude that MCP and DAF cooperatively protect host cells from C3 targeting and, in these T cell lines, MCP is sufficient for preventing C3 deposition even without DAF. After all, human cells undergo almost no autologous complement-mediated cytolysis if they express at least one of the functionally active inhibitors, MCP, DAF, or p18.

Full Text

The Full Text of this article is available as a PDF (849.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bara S., Lint T. F. The third component of complement (C3) bound to tumor target cells enhances their sensitivity to killing by activated macrophages. J Immunol. 1987 Feb 15;138(4):1303–1309. [PubMed] [Google Scholar]
  2. Cole J. L., Housley G. A., Jr, Dykman T. R., MacDermott R. P., Atkinson J. P. Identification of an additional class of C3-binding membrane proteins of human peripheral blood leukocytes and cell lines. Proc Natl Acad Sci U S A. 1985 Feb;82(3):859–863. doi: 10.1073/pnas.82.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornacoff J. B., Hebert L. A., Smead W. L., VanAman M. E., Birmingham D. J., Waxman F. J. Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest. 1983 Feb;71(2):236–247. doi: 10.1172/JCI110764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davitz M. A., Low M. G., Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein. J Exp Med. 1986 May 1;163(5):1150–1161. doi: 10.1084/jem.163.5.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harada R., Okada N., Fujita T., Okada H. Purification of 1F5 antigen that prevents complement attack on homologous cell membranes. J Immunol. 1990 Mar 1;144(5):1823–1828. [PubMed] [Google Scholar]
  7. Hourcade D., Holers V. M., Atkinson J. P. The regulators of complement activation (RCA) gene cluster. Adv Immunol. 1989;45:381–416. doi: 10.1016/s0065-2776(08)60697-5. [DOI] [PubMed] [Google Scholar]
  8. Hänsch G. M., Schönermark S., Roelcke D. Paroxysmal nocturnal hemoglobinuria type III. Lack of an erythrocyte membrane protein restricting the lysis by C5b-9. J Clin Invest. 1987 Jul;80(1):7–12. doi: 10.1172/JCI113065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinoshita T., Medof M. E., Silber R., Nussenzweig V. Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med. 1985 Jul 1;162(1):75–92. doi: 10.1084/jem.162.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Markwell M. A., Fox C. F. Surface-specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3alpha,6alpha-diphenylglycoluril. Biochemistry. 1978 Oct 31;17(22):4807–4817. doi: 10.1021/bi00615a031. [DOI] [PubMed] [Google Scholar]
  12. McConnell I., Klein G., Macanovic M., Gorman N. T., Raniwalla J. Malignant cells isolated from Burkitt's lymphoma but not other forms of leukemia activate the alternative complement pathway in human serum. Eur J Immunol. 1981 Feb;11(2):132–135. doi: 10.1002/eji.1830110213. [DOI] [PubMed] [Google Scholar]
  13. McNearney T., Ballard L., Seya T., Atkinson J. P. Membrane cofactor protein of complement is present on human fibroblast, epithelial, and endothelial cells. J Clin Invest. 1989 Aug;84(2):538–545. doi: 10.1172/JCI114196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Medof M. E., Kinoshita T., Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med. 1984 Nov 1;160(5):1558–1578. doi: 10.1084/jem.160.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mold C., Nemerow G. R., Bradt B. M., Cooper N. R. CR2 is a complement activator and the covalent binding site for C3 during alternative pathway activation by Raji cells. J Immunol. 1988 Mar 15;140(6):1923–1929. [PubMed] [Google Scholar]
  16. Morgan B. P. Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J. 1989 Nov 15;264(1):1–14. doi: 10.1042/bj2640001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morgan B. P., Imagawa D. K., Dankert J. R., Ramm L. E. Complement lysis of U937, a nucleated mammalian cell line in the absence of C9: effect of C9 on C5b-8 mediated cell lysis. J Immunol. 1986 May 1;136(9):3402–3406. [PubMed] [Google Scholar]
  18. NISONOFF A., WISSLER F. C., LIPMAN L. N. Properties of the major component of a peptic digest of rabbit antibody. Science. 1960 Dec 9;132(3441):1770–1771. doi: 10.1126/science.132.3441.1770. [DOI] [PubMed] [Google Scholar]
  19. Nagasawa S., Stroud R. M. Mechanism of action of the C3b inactivator: requirement for a high molecular weight cofactor (C3b-C4bINA cofactor) and production of a new C3b derivative (C3b'). Immunochemistry. 1977 Nov-Dec;14(11-12):749–756. doi: 10.1016/0019-2791(77)90345-7. [DOI] [PubMed] [Google Scholar]
  20. Newman S. L., Mikus L. K. Deposition of C3b and iC3b onto particulate activators of the human complement system. Quantitation with monoclonal antibodies to human C3. J Exp Med. 1985 Jun 1;161(6):1414–1431. doi: 10.1084/jem.161.6.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., Austen K. F. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982 Jul;129(1):184–189. [PubMed] [Google Scholar]
  22. Nicholson-Weller A., Spicer D. B., Austen K. F. Deficiency of the complement regulatory protein, "decay-accelerating factor," on membranes of granulocytes, monocytes, and platelets in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1985 Apr 25;312(17):1091–1097. doi: 10.1056/NEJM198504253121704. [DOI] [PubMed] [Google Scholar]
  23. Ohanian S. H., Schlager S. I. Humoral immune killing of nucleated cells: mechanisms of complement-mediated attack and target cell defense. Crit Rev Immunol. 1981 Jan;1(3):165–209. [PubMed] [Google Scholar]
  24. Pangburn M. K., Müller-Eberhard H. J. The alternative pathway of complement. Springer Semin Immunopathol. 1984;7(2-3):163–192. doi: 10.1007/BF01893019. [DOI] [PubMed] [Google Scholar]
  25. Pangburn M. K., Schreiber R. D., Müller-Eberhard H. J. Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5430–5434. doi: 10.1073/pnas.80.17.5430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parker C. J., Wiedmer T., Sims P. J., Rosse W. F. Characterization of the complement sensitivity of paroxysmal nocturnal hemoglobinuria erythrocytes. J Clin Invest. 1985 Jun;75(6):2074–2084. doi: 10.1172/JCI111927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pommier C. G., Inada S., Fries L. F., Takahashi T., Frank M. M., Brown E. J. Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J Exp Med. 1983 Jun 1;157(6):1844–1854. doi: 10.1084/jem.157.6.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Praz F., Lesavre P. Alternative pathway of complement activation by human lymphoblastoid B and T cell lines. J Immunol. 1983 Sep;131(3):1396–1399. [PubMed] [Google Scholar]
  29. Ramos O. F., Kai C., Yefenof E., Klein E. The elevated natural killer sensitivity of targets carrying surface-attached C3 fragments require the availability of the iC3b receptor (CR3) on the effectors. J Immunol. 1988 Feb 15;140(4):1239–1243. [PubMed] [Google Scholar]
  30. Ramos O. F., Patarroyo M., Yefenof E., Klein E. Requirement of leukocytic cell adhesion molecules (CD11a-c/CD18) in the enhanced NK lysis of iC3b-opsonized targets. J Immunol. 1989 Jun 1;142(11):4100–4104. [PubMed] [Google Scholar]
  31. Ross G. D., Medof M. E. Membrane complement receptors specific for bound fragments of C3. Adv Immunol. 1985;37:217–267. doi: 10.1016/s0065-2776(08)60341-7. [DOI] [PubMed] [Google Scholar]
  32. Schreiber R. D., Pangburn M. K., Bjornson A. B., Brothers M. A., Müller-Eberhard H. J. The role of C3 fragments in endocytosis and extracellular cytotoxic reactions by polymorphonuclear leukocytes. Clin Immunol Immunopathol. 1982 May;23(2):335–357. doi: 10.1016/0090-1229(82)90119-2. [DOI] [PubMed] [Google Scholar]
  33. Seya T., Atkinson J. P. Functional properties of membrane cofactor protein of complement. Biochem J. 1989 Dec 1;264(2):581–588. doi: 10.1042/bj2640581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Seya T., Ballard L. L., Bora N. S., Kumar V., Cui W., Atkinson J. P. Distribution of membrane cofactor protein of complement on human peripheral blood cells. An altered form is found on granulocytes. Eur J Immunol. 1988 Aug;18(8):1289–1294. doi: 10.1002/eji.1830180821. [DOI] [PubMed] [Google Scholar]
  35. Seya T., Farries T., Nickells M., Atkinson J. P. Additional forms of human decay-accelerating factor (DAF). J Immunol. 1987 Aug 15;139(4):1260–1267. [PubMed] [Google Scholar]
  36. Seya T., Hara T., Matsumoto M., Akedo H. Quantitative analysis of membrane cofactor protein (MCP) of complement. High expression of MCP on human leukemia cell lines, which is down-regulated during cell differentiation. J Immunol. 1990 Jul 1;145(1):238–245. [PubMed] [Google Scholar]
  37. Seya T., Hara T., Uenaka A., Nakayama E., Akedo H. Application of protein A-rosette assay for screening of monoclonal antibodies to human complement regulatory proteins. Complement Inflamm. 1990;7(2):78–89. doi: 10.1159/000463132. [DOI] [PubMed] [Google Scholar]
  38. Seya T., Nagasawa S. A fluorometric method for determination of C3b inactivator. Clin Chim Acta. 1982 Mar 12;119(3):189–196. doi: 10.1016/0009-8981(82)90331-x. [DOI] [PubMed] [Google Scholar]
  39. Seya T., Nagasawa S., Atkinson J. P. C4b-binding protein and a 60,000-Dalton plasma protein share antigenic determinants with membrane cofactor protein of complement. J Immunol. 1990 Mar 15;144(6):2312–2320. [PubMed] [Google Scholar]
  40. Seya T., Okada M., Nishino H., Atkinson J. P. Regulation of proteolytic activity of complement factor I by pH: C3b/C4b receptor (CR1) and membrane cofactor protein (MCP) have different pH optima for factor I-mediated cleavage of C3b. J Biochem. 1990 Feb;107(2):310–315. doi: 10.1093/oxfordjournals.jbchem.a123044. [DOI] [PubMed] [Google Scholar]
  41. Sugita Y., Nakano Y., Tomita M. Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem. 1988 Oct;104(4):633–637. doi: 10.1093/oxfordjournals.jbchem.a122524. [DOI] [PubMed] [Google Scholar]
  42. Sugita Y., Tobe T., Oda E., Tomita M., Yasukawa K., Yamaji N., Takemoto T., Furuichi K., Takayama M., Yano S. Molecular cloning and characterization of MACIF, an inhibitor of membrane channel formation of complement. J Biochem. 1989 Oct;106(4):555–557. doi: 10.1093/oxfordjournals.jbchem.a122893. [DOI] [PubMed] [Google Scholar]
  43. Wright S. D., Craigmyle L. S., Silverstein S. C. Fibronectin and serum amyloid P component stimulate C3b- and C3bi-mediated phagocytosis in cultured human monocytes. J Exp Med. 1983 Oct 1;158(4):1338–1343. doi: 10.1084/jem.158.4.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yefenof E., McConnell I. Interferon amplifies complement activation by Burkitt's lymphoma cells. Nature. 1985 Feb 21;313(6004):684–685. doi: 10.1038/313684a0. [DOI] [PubMed] [Google Scholar]
  45. Zalman L. S., Wood L. M., Frank M. M., Müller-Eberhard H. J. Deficiency of the homologous restriction factor in paroxysmal nocturnal hemoglobinuria. J Exp Med. 1987 Feb 1;165(2):572–577. doi: 10.1084/jem.165.2.572. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES