Abstract
7-Methylpterin and 7-methyllumizine were isolated and identified in extracts of methanogenic bacteria which had been extracted in air with ethanol-water. Ethanol-water preparations of cells extracted under nitrogen or hydrogen were devoid of these compounds. Extracts of cells obtained in the presence of air also had an increased amount of a complex arylamine which, on acid hydrolysis, gave 1 mol each of phosphate, 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane, and alpha-hydroxyglutaric acid. Gas chromatography-mass spectrometry was used to identify the 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane as its tetratrimethylsilyl derivative and the alpha-hydroxyglutaric acid as the n-butyl ester derivative of its gamma-lactone. When exposed to air, extracts of cells prepared in the absence of air produced 6-acetyl-7-methylpterin and 7-methylxanthopterin in addition to 7-methylpterin and 7-methyllumizine. It is concluded that these compounds are derived from the oxidative cleavage of the tetrahydromethanopterin, which is present in these bacteria, by a series of reactions analogous to those known to occur in the oxidative cleavage of tetrahydrofolic acid.
Full text
PDF![516](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58a1/218878/13bf4811ff0b/jbacter00222-0058.png)
![517](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58a1/218878/85037b227a3d/jbacter00222-0059.png)
![518](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58a1/218878/9b0f5f0bbdbb/jbacter00222-0060.png)
![519](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58a1/218878/ad6f64099e77/jbacter00222-0061.png)
![520](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58a1/218878/6836c2fc8001/jbacter00222-0062.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLAKLEY R. L. The interconversion of serine and glycine; preparation and properties of catalytic derivatives of pteroylglutamic acid. Biochem J. 1957 Feb;65(2):331–342. doi: 10.1042/bj0650331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escalante-Semerena J. C., Leigh J. A., Rinehart K. L., Wolfe R. S. Formaldehyde activation factor, tetrahydromethanopterin, a coenzyme of methanogenesis. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1976–1980. doi: 10.1073/pnas.81.7.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eto I., Krumdieck C. L. Determination of three different pools of reduced one-carbon-substituted folates. 1. A study of the fundamental chemical reactions. Anal Biochem. 1980 Nov 15;109(1):167–184. doi: 10.1016/0003-2697(80)90026-3. [DOI] [PubMed] [Google Scholar]
- GOTO M., FORREST H. S. Identification of a new phosphorylated pteridine from E. coli. Biochem Biophys Res Commun. 1961 Nov 20;6:180–183. doi: 10.1016/0006-291x(61)90125-5. [DOI] [PubMed] [Google Scholar]
- Johnson J. L., Hainline B. E., Rajagopalan K. V. Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component. J Biol Chem. 1980 Mar 10;255(5):1783–1786. [PubMed] [Google Scholar]
- Keltjens J. T., Huberts M. J., Laarhoven W. H., Vogels G. D. Structural elements of methanopterin, a novel pterin present in Methanobacterium thermoautotrophicum. Eur J Biochem. 1983 Feb 15;130(3):537–544. doi: 10.1111/j.1432-1033.1983.tb07183.x. [DOI] [PubMed] [Google Scholar]
- Kobayashi K., Forrest H. S. Identification of pteridines produced by three species of photosynthetic bacteria. Biochim Biophys Acta. 1967 Aug 29;141(3):642–644. doi: 10.1016/0304-4165(67)90195-x. [DOI] [PubMed] [Google Scholar]
- LEVENBERG B., HAYAISHI O. A bacterial pterin deaminase. J Biol Chem. 1959 Apr;234(4):955–961. [PubMed] [Google Scholar]
- Lancaster J. R., Jr Membrane-bound flavin adenine dinucleotide in Methanobacterium Bryantii. Biochem Biophys Res Commun. 1981 May 15;100(1):240–246. doi: 10.1016/s0006-291x(81)80088-5. [DOI] [PubMed] [Google Scholar]
- Lloyd T., Mori T., Kaufman S. 6-Methyltetrahydropterin. Isolation and identification as the highly active hydroxylase cofactor from tetrahydrofolate. Biochemistry. 1971 Jun 8;10(12):2330–2336. doi: 10.1021/bi00788a024. [DOI] [PubMed] [Google Scholar]
- Lovley D. R., Greening R. C., Ferry J. G. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol. 1984 Jul;48(1):81–87. doi: 10.1128/aem.48.1.81-87.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R., White R. H., Ferry J. G. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp. J Bacteriol. 1984 Nov;160(2):521–525. doi: 10.1128/jb.160.2.521-525.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKellar R. C., Shaw K. M., Sprott G. D. Isolation and characterization of a FAD-dependent NADH diaphorase from Methanospirillum hungatei strain GP1. Can J Biochem. 1981 Feb;59(2):83–91. doi: 10.1139/o81-013. [DOI] [PubMed] [Google Scholar]
- Ortiz P. J., Hotchkiss R. D. The enzymatic synthesis of dihydrofolate and dihydropteroate in cell-free preparations from wild-type and sulfonamide-resistant pneumococcus. Biochemistry. 1966 Jan;5(1):67–74. doi: 10.1021/bi00865a010. [DOI] [PubMed] [Google Scholar]
- SHIOTA T., DISRAELY M. N., MCCANN M. P. THE ENZYMATIC SYNTHESIS OF FOLATE-LIKE COMPOUNDS FROM HYDROXYMETHYLDIHYDROPTERIDINE PYROPHOSPHATE. J Biol Chem. 1964 Jul;239:2259–2266. [PubMed] [Google Scholar]
- SMYTH R. B., MCKEOWN G. G. THE ANALYSIS OF ARYLAMINES AND PHENOLS IN OXIDATION-TYPE HAIR DYES BY PAPER CHROMATOGRAPHY. J Chromatogr. 1964 Dec;16:454–459. doi: 10.1016/s0021-9673(01)82515-2. [DOI] [PubMed] [Google Scholar]
- Schauer N. L., Ferry J. G. FAD requirement for the reduction of coenzyme F420 by formate dehydrogenase from Methanobacterium formicicum. J Bacteriol. 1983 Aug;155(2):467–472. doi: 10.1128/jb.155.2.467-472.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schauer N. L., Ferry J. G. Properties of formate dehydrogenase in Methanobacterium formicicum. J Bacteriol. 1982 Apr;150(1):1–7. doi: 10.1128/jb.150.1.1-7.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urushibara T., Forrest H. S., Hoare D. S., Patel R. N. Pteridines produced by Methylococcus capsulatus. Isolation and identification of a neopterin 2':3'-phosphate. Biochem J. 1971 Nov;125(1):141–146. doi: 10.1042/bj1250141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urushibara T., Forrest H. S. Identification of 2-amino-4-hydroxy-6-methylpteridine as a naturally-occurring compound in two methane-oxidizing bacteria. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1189–1193. doi: 10.1016/0006-291x(70)90921-6. [DOI] [PubMed] [Google Scholar]
- Van Beelen P., Geerts W. J., Pol A., Vogels G. D. Quantification of coenzymes and related compounds from methanogenic bacteria by high-performance liquid chromatography. Anal Biochem. 1983 Jun;131(2):285–290. doi: 10.1016/0003-2697(83)90171-9. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zakrzewski S. F. Evidence for the chemical interaction between 2-mercaptoethanol and tetrahydrofolate. J Biol Chem. 1966 Jun 25;241(12):2957–2961. [PubMed] [Google Scholar]
- Zinder S. H., Mah R. A. Isolation and Characterization of a Thermophilic Strain of Methanosarcina Unable to Use H(2)-CO(2) for Methanogenesis. Appl Environ Microbiol. 1979 Nov;38(5):996–1008. doi: 10.1128/aem.38.5.996-1008.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Beelen P., Stassen A. P., Bosch J. W., Vogels G. D., Guijt W., Haasnoot C. A. Elucidation of the structure of methanopterin, a coenzyme from Methanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. Eur J Biochem. 1984 Feb 1;138(3):563–571. doi: 10.1111/j.1432-1033.1984.tb07951.x. [DOI] [PubMed] [Google Scholar]