Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Dec 1;166(6):1654–1667. doi: 10.1084/jem.166.6.1654

Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies

PMCID: PMC2188798  PMID: 3119761

Abstract

We have examined the cells involved in the development of contact sensitivity to FITC in CBA mice. After skin painting with antigen, the number of dendritic cells (DC) in the draining lymph nodes increased by 30 min, was maximal at 48 h, and returned to normal by 6 d. Derivation of some DC from Langerhans' cells of the skin was indicated from the presence of Birbeck granules observed in some DC isolated 24 h after skin painting. The DC acquired FITC and by 8 h there were two populations, one highly fluorescent and the other less fluorescent. The highly fluorescent cells were present between 8 h and 3 d after sensitization, and during this period the DC were potent at initiating primary proliferative responses of normal syngeneic T lymphocytes in vitro. Between days 3 and 5 the numbers of lymphocytes in the draining lymph node increased. During this period purified T lymphocytes did not express detectable levels of antigen, but enriched B cell populations expressed antigen transiently on day 1, 2, or 3 after exposure to antigen. The results showed that, during a 3-d period after exposure to antigen, DC expressed antigen and stimulated T cell proliferation. We speculate that low amounts of FITC binding selectively to veiled cells or lymph node DC in the first hours after exposure to antigen are not immunogenic but that Langerhans' cells acquire high levels of antigen, enter the nodes, and initiate immune responses.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba S., Aizawa H., Obata M., Tagami H. Dynamic changes in epidermal Ia-positive cells in allergic contact sensitivity reactions in mice. Br J Dermatol. 1984 Nov;111(5):507–516. doi: 10.1111/j.1365-2133.1984.tb06619.x. [DOI] [PubMed] [Google Scholar]
  2. Asherson G. L., Colizzi V., Watkins M. C. Immunogenic cells in the regional lymph nodes after painting with the contact sensitizers picryl chloride and oxazolone: evidence for the presence of IgM antibody on their surface. Immunology. 1983 Mar;48(3):561–569. [PMC free article] [PubMed] [Google Scholar]
  3. Asherson G. L., Mayhew B. Induction of cell-mediated immunity in the mouse: circumstantial evidence for highly immunogenic antigen in the regional lymph nodes following skin painting with contact sensitizing agents. Isr J Med Sci. 1976 Apr-May;12(4-5):454–467. [PubMed] [Google Scholar]
  4. BAUER J. A., Jr STONE SH: Isologous and homologous lymphoid transplants. I. The transfer of tuberculin hypersensitivity in inbred pigs. J Immunol. 1961 Feb;86:177–189. [PubMed] [Google Scholar]
  5. Britz J. S., Askenase P. W., Ptak W., Steinman R. M., Gershon R. K. Specialized antigen-presenting cells. Splenic dendritic cells and peritoneal-exudate cells induced by mycobacteria activate effector T cells that are resistant to suppression. J Exp Med. 1982 May 1;155(5):1344–1356. doi: 10.1084/jem.155.5.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drexhage H. A., Mullink H., de Groot J., Clarke J., Balfour B. M. A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cell. Cell Tissue Res. 1979 Nov;202(3):407–430. doi: 10.1007/BF00220434. [DOI] [PubMed] [Google Scholar]
  7. Farrant J., Clark J. C., Lee H., Knight S. C., O'Brien J. Conditions for measuring DNA synthesis in PHA stimulated human lymphocytes in 20 microliters hanging drops with various cell concentrations and periods of culture. J Immunol Methods. 1980;33(4):301–312. doi: 10.1016/0022-1759(80)90001-0. [DOI] [PubMed] [Google Scholar]
  8. Hoefsmit E. C., Duijvestijn A. M., Kamperdijk E. W. Relation between langerhans cells, veiled cells, and interdigitating cells. Immunobiology. 1982 Apr;161(3-4):255–265. doi: 10.1016/S0171-2985(82)80081-8. [DOI] [PubMed] [Google Scholar]
  9. Inaba K., Steinman R. M. Accessory cell-T lymphocyte interactions. Antigen-dependent and -independent clustering. J Exp Med. 1986 Feb 1;163(2):247–261. doi: 10.1084/jem.163.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  11. Kelley V. E., Naor D., Tarcic N., Gaulton G. N., Strom T. B. Anti-interleukin 2 receptor antibody suppresses delayed-type hypersensitivity to foreign and syngeneic antigens. J Immunol. 1986 Oct 1;137(7):2122–2124. [PubMed] [Google Scholar]
  12. Kelly R. H., Balfour B. M., Armstrong J. A., Griffiths S. Functional anatomy of lymph nodes. II. Peripheral lymph-borne mononuclear cells. Anat Rec. 1978 Jan;190(1):5–21. doi: 10.1002/ar.1091900103. [DOI] [PubMed] [Google Scholar]
  13. Knight S. C., Bedford P., Hunt R. The role of dendritic cells in the initiation of immune responses to contact sensitizers. II. Studies in nude mice. Cell Immunol. 1985 Sep;94(2):435–439. doi: 10.1016/0008-8749(85)90267-9. [DOI] [PubMed] [Google Scholar]
  14. Knight S. C., Krejci J., Malkovsky M., Colizzi V., Gautam A., Asherson G. L. The role of dendritic cells in the initiation of immune responses to contact sensitizers. I. In vivo exposure to antigen. Cell Immunol. 1985 Sep;94(2):427–434. doi: 10.1016/0008-8749(85)90266-7. [DOI] [PubMed] [Google Scholar]
  15. Knight S. C. Veiled cells--"dendritic cells" of the peripheral lymph. Immunobiology. 1984 Dec;168(3-5):349–361. doi: 10.1016/S0171-2985(84)80122-9. [DOI] [PubMed] [Google Scholar]
  16. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985 Apr 11;314(6011):537–539. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]
  17. Macatonia S. E., Edwards A. J., Knight S. C. Dendritic cells and the initiation of contact sensitivity to fluorescein isothiocyanate. Immunology. 1986 Dec;59(4):509–514. [PMC free article] [PubMed] [Google Scholar]
  18. McFarlin D. E., Balfour B. Contact sensitivity in the pig. Immunology. 1973 Dec;25(6):995–1009. [PMC free article] [PubMed] [Google Scholar]
  19. Moorhead J. W. Tolerance and contact sensitivity to DNFA in mice. VIII. Identification of distinct T cell subpopulations that mediate in vivo and in vitro manifestations of delayed hypersensitivity. J Immunol. 1978 Jan;120(1):137–144. [PubMed] [Google Scholar]
  20. Nussenzweig M. C., Steinman R. M., Witmer M. D., Gutchinov B. A monoclonal antibody specific for mouse dendritic cells. Proc Natl Acad Sci U S A. 1982 Jan;79(1):161–165. doi: 10.1073/pnas.79.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Brien J., Knight S., Quick N. A., Moore E. H., Platt A. S. A simple technique for harvesting lymphocytes cultured in Terasaki plates. J Immunol Methods. 1979;27(3):219–223. doi: 10.1016/0022-1759(79)90219-9. [DOI] [PubMed] [Google Scholar]
  22. Ptak W., Asherson G. L. Contact and delayed hypersensitivity in the mouse. II. The role of different cell populations. Immunology. 1969 Nov;17(5):769–775. [PMC free article] [PubMed] [Google Scholar]
  23. Ptak W., Rozycka D., Askenase P. W., Gershon R. K. Role of antigen-presenting cells in the development and persistence of contact hypersensitivity. J Exp Med. 1980 Feb 1;151(2):362–375. doi: 10.1084/jem.151.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schuler G., Romani N., Steinman R. M. A comparison of murine epidermal Langerhans cells with spleen dendritic cells. J Invest Dermatol. 1985 Jul;85(1 Suppl):99s–106s. doi: 10.1111/1523-1747.ep12275566. [DOI] [PubMed] [Google Scholar]
  25. Schuler G., Steinman R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985 Mar 1;161(3):526–546. doi: 10.1084/jem.161.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shah P. D., Gilbertson S. M., Rowley D. A. Dendritic cells that have interacted with antigen are targets for natural killer cells. J Exp Med. 1985 Aug 1;162(2):625–636. doi: 10.1084/jem.162.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med. 1983 Aug 1;158(2):303–316. doi: 10.1084/jem.158.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Silberberg-Sinakin I., Thorbecke G. J., Baer R. L., Rosenthal S. A., Berezowsky V. Antigen-bearing langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell Immunol. 1976 Aug;25(2):137–151. doi: 10.1016/0008-8749(76)90105-2. [DOI] [PubMed] [Google Scholar]
  29. Silberberg-Sinakin I., Thorbecke G. J. Contact hypersensitivity and Langerhans cells. J Invest Dermatol. 1980 Jul;75(1):61–67. doi: 10.1111/1523-1747.ep12521144. [DOI] [PubMed] [Google Scholar]
  30. Silberberg I., Baer R. L., Rosenthal S. A., Thorbecke G. J., Berezowsky V. Dermal and intravascular Langerhans cells at sites of passively induced allergic contact sensitivity. Cell Immunol. 1975 Aug;18(2):435–453. doi: 10.1016/0008-8749(75)90071-4. [DOI] [PubMed] [Google Scholar]
  31. Steinman R. M. Dendritic cells. Transplantation. 1981 Mar;31(3):151–155. [PubMed] [Google Scholar]
  32. Stohlman S. A., Matsushima G. K., Casteel N., Frelinger J. A. The defect in delayed-type hypersensitivity of young adult SJL mice is due to a lack of functional antigen-presenting cells. Eur J Immunol. 1985 Sep;15(9):913–916. doi: 10.1002/eji.1830150909. [DOI] [PubMed] [Google Scholar]
  33. Stone S. H. Transfedotr of Allergic Encephalomyelitis by Lymph Node Cells in Inbred Guinea Pigs. Science. 1961 Sep 1;134(3479):619–620. doi: 10.1126/science.134.3479.619. [DOI] [PubMed] [Google Scholar]
  34. Sullivan S., Bergstresser P. R., Tigelaar R. E., Streilein J. W. Induction and regulation of contact hypersensitivity by resident, bone marrow-derived, dendritic epidermal cells: Langerhans cells and Thy-1+ epidermal cells. J Immunol. 1986 Oct 15;137(8):2460–2467. [PubMed] [Google Scholar]
  35. Thomas D. W., Forni G., Shevach E. M., Green I. The role of the macrophage as the stimulator cell in contact sensitivity. J Immunol. 1977 May;118(5):1677–1681. [PubMed] [Google Scholar]
  36. Toews G. B., Bergstresser P. R., Streilein J. W. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol. 1980 Jan;124(1):445–453. [PubMed] [Google Scholar]
  37. Van Loveren H., Askenase P. W. Delayed-type hypersensitivity is mediated by a sequence of two different T cell activities. J Immunol. 1984 Nov;133(5):2397–2401. [PubMed] [Google Scholar]
  38. Van Loveren H., Kato K., Meade R., Green D. R., Horowitz M., Ptak W., Askenase P. W. Characterization of two different Ly-1+ T cell populations that mediate delayed-type hypersensitivity. J Immunol. 1984 Nov;133(5):2402–2411. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES